- 博客(2)
- 收藏
- 关注
原创 开集识别,雷达微多普勒特征
该网络的目的是将雷达微多普勒特征映射到一个嵌入空间,使得同一类别的样本更加紧密,不同类别的样本更加分散。接着,作者在训练好的嵌入空间中,为每个已知类别构建了一个基于极值理论(EVT)的反威布尔分布函数,用来估计一个测试样本属于该类别的概率,并通过一个阈值来判断该样本是属于已知类别还是未知类别。然后,作者使用一个余弦边界损失函数(CM loss)来训练DDRN,该损失函数是在SoftMax损失函数的基础上引入了一个余弦边缘参数m,用来增加类间距离和减小类内方差,从而提高特征的判别性。否则,将其标记为未知。
2023-08-17 22:07:51 382 1
原创 基于pytorch搭建resnet18网络并训练数据集,loss曲线和精确度曲线振荡,怎么办?
self.fc = nn.Linear(512 * block.expansion, num_classes) # 将输出维度修改为10。这是调用resnet18网络,训练自己10个人每个人100个样本一共1000个时频图样本的数据集,为什么生成的loss曲线和精确度曲线振荡呢?x = self.softmax(x) # 使用softmax函数对输出结果进行归一化。# 添加dropout层。# 添加dropout层。# 将得到的指标添加到对应列表。# 定义四个列表分别存储4个指标的值。
2023-06-07 16:14:45 816 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人