递归
函数的定义
函数是对实现某一个功能的代码的模块化封装,其定义如下:
返回值类型 函数名(参数类型 参数名){
语句
return 返回值;
}
void 是无返回值
递归的定义
递归调用是函数内部调用自身的过程。递归必须要有结束条件,否则会进入无限递归,永远结束不了。
递归的原理
递归包括递推和回归,递推指将原问题不断分解成子问题,直到到达结束条件,返回最近子问题的解,然后逆向注意回归,最终到达递推开始时的原问题,返回原问题的解。
在递归算法中,每一次递推都需要一个栈空间来保存调用记录,因此,在计算空间复杂度是需要计算递归栈的辅助空间。它类似于放了一摞盘子的容器,每次放进去一个,拿出来的时候,就只能从顶端拿一个,不允许从中间插入和抽取,称之为后进先出(LIFO)
例题 P1464 Function
题目描述
对于一个递归函数 w(a,b,c)
如果a≤0 或 b≤0 或 a≤0,返回1
如果a>20 或 b>20 或 c>20 就返回 w(20,20,20)
如果 a<b 并且 b<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)
其它的情况就返回 w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)
会有若干行。
并以 -1,-1,-1−1,−1,−1 结束。
保证输入的数在 [-9223372036854775808,9223372036854775807]之间,并且是整数。
解析
看题!!!数据比较大,要开long long,再看是多组数据!!!这道题是要用递归,这没有错,不过如以下代码直接递归就会全部数据TLE
long long w(long long a,long long b,long long c){
if(a<=0 || b<=0 || c<=0){
return 1;
}
if(a>20 || b>20 || c>20){
return w(20,20,20);
}
if(a<b && b<c){
return w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);
}
return w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);
}
此题不仅要用递归,还需要使用数组记忆化,使用了记忆化,大部分题才不会超时.如果a,b,c的结果已经被记忆了就直接返回,未记忆继续计算,这里就要开一个三维数组了,然后再递归函数w里将计算结果保存到三维数组里。然后再使用一个函数,判断a,b,c的结果是否被记忆了,记忆了就直接返回值,未记忆继续递归,这个函数也要是取代上面代码的return w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);最后在主函数里调用w即可。
我的代码
我这里把函数的代码都分享出来了,主函数自己写,不要抄袭!!!自己总结,自己想!!!
long long fw(long long a, long long b, long long c){//如果是已经记忆了的abc,则直接返回数组值
if (arr[a][b][c] == 0)
return w(a,b,c);
else
return arr[a][b][c];
}
long long w(long long a, long long b, long long c)
{
if (a <= 0 || b <= 0 || c <= 0)
return 1;
else if (a > 20 || b > 20 || c > 20)
return w(20, 20, 20);//这里不能赋值,而是直接返回,因为数组下标不能越界
else if (a < b && b < c)
arr[a][b][c]=(fw(a, b, c - 1) + fw(a, b, c - 1) - fw(a, b - 1, c));
else
arr[a][b][c] = (fw(a - 1, b, c) + fw(a - 1, b - 1, c) + fw(a-1, b, c - 1) - fw(a-1, b - 1, c - 1));
return arr[a][b][c];//先赋值,最后return,而不是直接return,以实现记忆化搜索
}