数数(NKOJ-P8616)题解

题意描述

大小为n的集合S=\left \{ \left ( x_{1},y_{1} \right ) ,\left ( x_{2},y_{2} \right )\left ( x_{3},y_{3} \right )...\right \}是满足条件的,当且仅当把其中元素按y_{i}降序排序后,对于所有3\leqslant i\leqslant n,满足x_{i-2}\leqslant x_{i}\leqslant x_{i-1}x_{i-1}\leqslant x_{i}\leqslant x_{i-2}。给定集合T,其中\left | T \right |\leqslant 6000-10^9\leqslant x_i,y_i\leqslant 10^9

T满足条件的子集个数模10^{^{9}}+7的结果。

解题思路

1.基本算法

y_{i}降序排列后,x_{i}必须在前两个数之间,于是可以想到DP算法:

f_{i,j}表示以x_{i}为第一项,x_{j}为第二项的满足条件的子集个数,

所以其所有满足条件的情况有两种:

1.只有这两个数

2.后面再找一个在两个数之间的数这作为集合第三项

于是可以想到状态转移方程f_{i,j}=\left (\sum f_{j,k} \right )+1其中x_i\leqslant x_k\leqslant x_jx_j\leqslant x_k\leqslant x_i

时间复杂度O\left ( n^{3} \right )空间复杂度O\left ( n^{2} \right )

2.前缀和优化与离散化实现

观察状态转移方程,我们发现涉及到的x_k的值都会在一段连续的区间中,于是想到用前缀和优化

 定义sum_{i,j}=\sum f_{i,k}其中x_k\leqslant j

状态转移方程就能变为f_{i,j}=\left\{\begin{matrix} sum_{j,x_j}-sum_{i,x_i-1}(x_i<x_j)& & \\ sum_{j,x_i}-sum_{i,x_j-1}(x_j<x_i)& & \end{matrix}\right.

不过由于x_i范围较大,不能直接用此方法实现,但可以发现,我们只关心x_i的大小关系,而不需要其数值,所以我们可以将x_i离散化处理,把用p_i表示x_ix升序排序后的位置,问题就能解决。

时间复杂度O(n^2),空间复杂度O(n^2)

 

3.一些不太愉快的事情

在OJ中,此题时间卡的很紧,如果直接写可能会被卡掉一两个点,别问我怎么知道的,比起“火车头”这种歪门邪道的方法,对于这道题还有一个卡常的方法:程序中会用到许多加或减后取模运算,而参加运算的数都是取模之后的结果,于是以减代除是一种很好的优化方法。

示例代码

#include<bits/stdc++.h>

using namespace std;

const int N=6005,P=1e9+7;

int n;
struct node
{
	int x,y;
	bool operator<(const node &w)const
	{
		return y>w.y;
	}
}a[N];
int p[N],q[N];
int sum[N][N];
int f[N][N];
int ans;

bool cmp(int x,int y)
{
	return a[x].x<a[y].x;
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)scanf("%d%d",&a[i].x,&a[i].y);
	
	sort(a+1,a+n+1);
	
	for(int i=1;i<=n;i++)q[i]=i;
	sort(q+1,q+n+1,cmp);
	for(int i=1;i<=n;i++)p[q[i]]=i;//离散化
	
	for(int i=1;i<=n;i++)f[i][i]=1;
	for(int i=n;i>=1;i--)
	{
		for(int j=i+1;j<=n;j++)
			if(a[i].x<a[j].x)
			{
				f[i][j]=sum[j][p[j]]-sum[j][p[i]-1];
				if(f[i][j]<0)f[i][j]+=P;
			}
			else
			{
				f[i][j]=sum[j][p[i]]-sum[j][p[j]-1];
				if(f[i][j]<0)f[i][j]+=P;
			}
            //f[i][j]=∑f[j][k](x[i]<x[k]<x[j]或x[j]<x[k]<x[j])
		for(int j=i;j<=n;j++)sum[i][p[j]]=f[i][j];
		for(int j=1;j<=n;j++)
		{
			sum[i][j]=sum[i][j]+sum[i][j-1];
			if(sum[i][j]>=P)sum[i][j]-=P;
		}
        //sum[i][j]=∑f[i][k](x[k]<j)
	}
	
	for(int i=1;i<=n;i++)
		for(int j=i;j<=n;j++)
		{
			ans+=f[i][j];
			if(ans>=P)ans-=P;
		}
	
	printf("%d",ans);
	
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值