一元多项式相加问题(两种方法)

一元多项式的相加问题,主要运用了线性结构的合并,在合并线性结构的基础上,增加判断,所以我们可以将这个问题理解为一个复杂的线性表合并问题 

目录

问题描述

一、顺序表法

1.1 初始化并创建顺序表

1.2 一元多项式相加算法

1.3 完整代码

二、单链表法

1.1 初始化并创建链表

1.2 一元多项式相加算法

1.3 完整代码

三、运行结果

附:系列文章


问题描述

【问题描述】

用线性表存放一元多项式,实现两个一元多项式相加,输出结果多项式。
【输入形式】

分两行依次输入两个一元多项式,按指数由低到高依次输入表达式各项的系数和指数,输入字符结束,如果输入的某项系数为0,则不建立该项。

【输出形式】

按指数由低到高依次输出结果表达式各项的系数和指数,如果结果表达式为空则不输出。

【样例输入1】

7 0 3 1 9 8 5 17  10 21 a

8 1 22 2 -9 8 a

【样例输出1】
7.000000 0  11.000000 1 22.000000 2 5.000000  17 10.000000 21

【样例输入2】

22.2 1 a

-22.2 1 b

【样例输出2】

一、顺序表法

利用顺序表实现一元多项式的相加时,我们需要一个存放系数项的数组和一个存放指数项的数组,在执行合并的过程中对指数项进行判断,最后将系数等于零的项删除即可

1.1 初始化并创建顺序表

初始化和创建过程可以参考顺序表的创建,唯一不同的是这里是两个数组而已

typedef struct List{
	double *base1;   //系数,double型变量   (理解为数组)
	int *base2;      //指数,int型变量      (数组)
	int len;
	int size;
}List,*PList;
int Init_List(PList L){
	L->base1=(double*)malloc(sizeof(double)*SIZE);  //初始化
	L->base2=(int*)malloc(sizeof(int)*SIZE);
	L->len=0;
	L->size=SIZE;
	return 1;
}
int Creat_List(PList L){   //创建的时候注意要给系数指数都赋值,其他就是创建顺序表的方法
	double a;
	int b;
	int i=0;
	while(scanf("%lf %d",&a,&b)==2){ 
        if(a==0) continue;         //系数为零时不建立这个项,直接下一次循环 
		if(L->len>=L->size){
			L->base1=(double*)realloc(L->base1,sizeof(double)*(L->size+INCREAM));
			L->base2=(int*)realloc(L->base2,sizeof(int)*(L->size+INCREAM));
			L->size+=INCREAM;
		}
		L->base1[i]=a;
		L->base2[i++]=b;
		L->len++;
	}
	return 1;
}

1.2 一元多项式相加算法

这个算法中一定要注意,当把所有元素都判断完并放入L3中后,一定要小心L3的长度不能忘

int Connect_List(PList L1,PList L2,PList L3){
	int i=0,j=0,k=0;    //分别为L1,L2,L3的下标(L1,L2,L3是数组)
	if(L1->len+L2->len>L3->len){    //判断L3空间是否足够,不够时要重新开辟空间
		L3->base1=(double *)realloc(L3->base1,(L3->size+INCREAM)*sizeof(double));
		L3->base2=(int *)realloc(L3->base2,(L3->size+INCREAM)*sizeof(int));
		L3->size+=INCREAM;
	}
	while(i<L1->len&&j<L2->len){  //循环执行判断,直到一方元素循环完退出循环
		if(L1->base2[i]==L2->base2[j]){ //当L1,L2的指数项相等时,L3的系数项等于两者系数相加
            L3->base1[k]=L1->base1[i]+L2->base1[j++]; 
            L3->base2[k++]=L1->base2[i++];
		}else if(L1->base2[i]<L2->base2[j]){  //当L1指数项较小时,L3的系数就是L1
			L3->base1[k]=L1->base1[i];
			L3->base2[k++]=L1->base2[i++];
		}else{                                //当L2指数项较小时,L3的系数就是L2
			L3->base1[k]=L2->base1[j];
			L3->base2[k++]=L2->base2[j++];
		}
	}
	while(i<L1->len){           //另一个循序表里剩余的元素都放入L3
		L3->base1[k]=L1->base1[i];
		L3->base2[k++]=L1->base2[i++];
	}
	while(j<L2->len){          
		L3->base1[k]=L2->base1[j];
		L3->base2[k++]=L2->base2[j++];
	}
	L3->len=k;                //千万不能忘掉L3的长度!!
	for(i=0;i<L3->len;i++){    //最后将L3中系数等于0的项删除
		if(L3->base1[i]==0){
			for(j=i;j<L3->len-1;j++){
				L3->base1[j]=L3->base1[j+1];
				L3->base2[j]=L3->base2[j+1];
			}
			L3->len--;
		}
	}
	return 1;
}

1.3 完整代码

#include<stdio.h>
#include<malloc.h>
#define SIZE 10
#define INCREAM 10
typedef struct List{
	double *base1;
	int *base2;
	int len;
	int size;
}List,*PList;
int Init_List(PList L){
	L->base1=(double*)malloc(sizeof(double)*SIZE);
	L->base2=(int*)malloc(sizeof(int)*SIZE);
	L->len=0;
	L->size=SIZE;
	return 1;
}
int Creat_List(PList L){
	double a;
	int b;
	int i=0;
	while(scanf("%lf %d",&a,&b)==2){
        if(a==0) continue;
		if(L->len>=L->size){
			L->base1=(double*)realloc(L->base1,sizeof(double)*(L->size+INCREAM));
			L->base2=(int*)realloc(L->base2,sizeof(int)*(L->size+INCREAM));
			L->size+=INCREAM;
		}
		L->base1[i]=a;
		L->base2[i++]=b;
		L->len++;
	}
	return 1;
}
int Print_List(PList L){
	int i;
	for(i=0;i<L->len;i++){
		printf("%lf %d ",L->base1[i],L->base2[i]);
	}
	printf("\n");
	return 1;
}
int Connect_List(PList L1,PList L2,PList L3){
	int i=0,j=0,k=0;
	if(L1->len+L2->len>L3->len){
		L3->base1=(double *)realloc(L3->base1,(L3->size+INCREAM)*sizeof(double));
		L3->base2=(int *)realloc(L3->base2,(L3->size+INCREAM)*sizeof(int));
		L3->size+=INCREAM;
	}
	while(i<L1->len&&j<L2->len){
		if(L1->base2[i]==L2->base2[j]){
            L3->base1[k]=L1->base1[i]+L2->base1[j++];
            L3->base2[k++]=L1->base2[i++];
		}else if(L1->base2[i]<L2->base2[j]){
			L3->base1[k]=L1->base1[i];
			L3->base2[k++]=L1->base2[i++];
		}else{
			L3->base1[k]=L2->base1[j];
			L3->base2[k++]=L2->base2[j++];
		}
	}
	while(i<L1->len){
		L3->base1[k]=L1->base1[i];
		L3->base2[k++]=L1->base2[i++];
	}
	while(j<L2->len){
		L3->base1[k]=L2->base1[j];
		L3->base2[k++]=L2->base2[j++];
	}
	L3->len=k;
	for(i=0;i<L3->len;i++){
		if(L3->base1[i]==0){
			for(j=i;j<L3->len-1;j++){
				L3->base1[j]=L3->base1[j+1];
				L3->base2[j]=L3->base2[j+1];
			}
			L3->len--;
		}
	}
	return 1;
}
int main(){
	List L1,L2,L3;
	Init_List(&L1);
	Init_List(&L2);
	Init_List(&L3);
	Creat_List(&L1);
	getchar();
	Creat_List(&L2);
	Connect_List(&L1,&L2,&L3);
	Print_List(&L3);
	return 0;
}

二、单链表法

运用单链表实现一元多项式相加的过程和顺序表类似,核心算法思想就是循环判断,将指数较小的项放入第三个表,当指数项相等时系数相加放入第三个表

1.1 初始化并创建链表

初始化和创建过程就是创建单链表的过程,唯一不同的也是我们有两个数据域

typedef struct Node{
	double data1;    //系数
	int data2;           //指数
	struct Node * next;
}Node,*PNode;
PNode Init_Node(){           //初始化和创建发放就是链表的创建方法
	PNode head=(PNode)malloc(sizeof(Node));
	head->next=NULL;
	return head;
}
int Creat_Node(PNode head){
	double a;
	int b;
    PNode p=head;
	while(scanf("%lf %d",&a,&b)==2){
        if(a==0) continue;        //系数为0,不建立该项
		PNode q=(PNode)malloc(sizeof(Node));
		q->data1=a;
		q->data2=b;
		p->next=q;
		p=q;
	}
	p->next=NULL;
	return 1;
}

1.2 一元多项式相加算法

算法思想与顺序表相同,循环判断,但是在单链表中,当我们遇到系数相加为零时可以直接释放,不连接到第三个单链表的后面,这正是单链表实现这个问题的一大亮点

PNode Connect_Node(PNode head1,PNode head2,PNode head3){
	PNode p,q,r;
	r=head3;     //第三个单恋表
	p=head1->next;
	q=head2->next;
	while(p&&q){
		if(p->data2<q->data2){    //判断将指数较小的项连接到r后面
			PNode s=(PNode)malloc(sizeof(Node));  //我们需要一个新的临时单链表
			s->data1=p->data1;
			s->data2=p->data2;
			r->next=s;
			r=s;
			p=p->next;
		}else if(p->data2==q->data2){   //当指数项相等时
			PNode s=(PNode)malloc(sizeof(Node));
			s->data1=p->data1+q->data1;   
			s->data2=p->data2;
			if(s->data1==0){  //判断两表系数相加是否为零
				free(s);     //为零时释放s
			}else{
				r->next=s;    //不为零时连接到r后面
				r=s;
			}
			p=p->next;
			q=q->next;
		}else{             //q的指数项较小,连接到r后面
			PNode s=(PNode)malloc(sizeof(Node));
			s->data1=q->data1;
			s->data2=q->data2;
			r->next=s;
			r=s;
			q=q->next;
		}		
	}
	if(p){       //最后还是要判断一下哪个表还有剩余元素,放入r后面
		r->next=p;
	}else if(q){
		r->next=q;
	}else{
		r->next=NULL;
	}
	return r;
}

1.3 完整代码

#include<stdio.h>
#include<malloc.h>
typedef struct Node{
	double data1;
	int data2;
	struct Node * next;
}Node,*PNode;
PNode Init_Node(){
	PNode head=(PNode)malloc(sizeof(Node));
	head->next=NULL;
	return head;
}
int Creat_Node(PNode head){
	double a;
	int b;
    PNode p=head;
	while(scanf("%lf %d",&a,&b)==2){
        if(a==0) continue;
		PNode q=(PNode)malloc(sizeof(Node));
		q->data1=a;
		q->data2=b;
		p->next=q;
		p=q;
	}
	p->next=NULL;
	return 1;
}
PNode Connect_Node(PNode head1,PNode head2,PNode head3){
	PNode p,q,r;
	r=head3;
	p=head1->next;
	q=head2->next;
	while(p&&q){
		if(p->data2<q->data2){
			PNode s=(PNode)malloc(sizeof(Node));
			s->data1=p->data1;
			s->data2=p->data2;
			r->next=s;
			r=s;
			p=p->next;
		}else if(p->data2==q->data2){
			PNode s=(PNode)malloc(sizeof(Node));
			s->data1=p->data1+q->data1;
			s->data2=p->data2;
			if(s->data1==0){
				free(s);
			}else{
				r->next=s;
				r=s;
			}
			p=p->next;
			q=q->next;
		}else{
			PNode s=(PNode)malloc(sizeof(Node));
			s->data1=q->data1;
			s->data2=q->data2;
			r->next=s;
			r=s;
			q=q->next;
		}		
	}
	if(p){
		r->next=p;
	}else if(q){
		r->next=q;
	}else{
		r->next=NULL;
	}
	return r;
}
int Print_Node(PNode head){
	PNode p=head->next;
	while(p){
		printf("%lf %d ",p->data1,p->data2);
		p=p->next;
	}
	printf("\n");
	return 1;
}
int main(){
	PNode p,q,r;
	p=Init_Node();
	q=Init_Node();
	r=Init_Node();
	Creat_Node(p);
	getchar();
	Creat_Node(q);
	Connect_Node(p,q,r);
	Print_Node(r);
	return 1;
}

三、运行结果

附:系列文章

序号文章目录直达链接
1顺序表的十个基本操作(全)https://want595.blog.csdn.net/article/details/127139051
2单链表的十三个基本操作(全)https://want595.blog.csdn.net/article/details/127139598
3四种创建单链表的方法https://want595.blog.csdn.net/article/details/127017405
4删除重复元素(顺序表、单链表)https://want595.blog.csdn.net/article/details/127023468
5两个有序表的合并(三种方法)https://want595.blog.csdn.net/article/details/127104602
6一元多项式相加问题(两种方法)https://want595.blog.csdn.net/article/details/127131351
7约瑟夫环问题(三种方法)https://want595.blog.csdn.net/article/details/127019472
8顺序栈与链栈https://want595.blog.csdn.net/article/details/127035609
9顺序循环队列与链队列https://want595.blog.csdn.net/article/details/127040115
10后缀表达式的转换(栈的运用)https://want595.blog.csdn.net/article/details/127088466
11简单表达式的计算(两种方法)https://want595.blog.csdn.net/article/details/127121720
12next数组(详细求法)https://want595.blog.csdn.net/article/details/127217629
13BF算法(具体应用)https://want595.blog.csdn.net/article/details/127138894
14串的模式匹配相关问题(BF算法、KMP算法)https://want595.blog.csdn.net/article/details/127182721
15二叉树的遍历(七种方法)https://want595.blog.csdn.net/article/details/127472445
  • 11
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
符号多项式的操作,已经成为表处理的典型用例。在数学上,一个一元多项式Pn(x)可按升幂写 成: Pn(x) = p0+ p1x+ p2x2+….+ pnxn 它由n+1个系数唯一确定,因此,在计算机里,它可用一个线 性表P来表示: P = (p0 ,p1 ,p2 ,… pn)每一项的指数i隐含在其系数pi的序号里。 假设Qm(x)是一元m次多项式,同样可用线性表Q来表示:Q = (q0 ,q1 ,q2 ,… qm)。 不失一般性,设m<n,则两个多项式相加的结果 Rn(x) = Pn(x)+Qm(x)可用线性表R表示:R = (p0+q0 , p1+q1 , p2 +q2 , … , pm +qm , pm+1 ,… pn)。显然,我们可以对P、Q和R采用顺序存储结构, 使得多项式相加算法定义十分简洁。至此,一元多项式的表示及相加问题似乎已经解决了。 然而在通常的应用中,多项式的次数可能很高且变化很大,使得顺序存储结构的最大长度很难 决定。特别是在处理形如:S(x) = 1+3x10000+2x20000的多项式时,就要用一长度为20001的线性表来 表示,表中仅有三个非零元素,这种对内存空间的浪费是应当避免的,但是如果只存储非零系数项 则显然必须同时存储相应的指数。 一般情况下的一元n次多项式可写成: Pn(x) = p1x e1 + p2x e2 + … + pmx em 其中 pi,是指数为 ei 的项的非零系数,且满足 0 ≤ e1 < e2 < …< em = n,若用一个长度为 m 且 每个元素有两个数据项(系数项和指数项)的线性表便可唯一确定多项式 Pn(x)。 ((p1 ,e1) , (p2 ,e2) , … ,(pm,em)) 在最坏情况下,n+1(=m)个系数都不为零,则比只存储每项系数的方案要多存储一倍的数据。但 是,对于 S(x)类的多项式,这种表示将大大节省空间。 本题要求选用线性表的一种合适的存储结构来表示一个一元多项式,并在此结构上实现一元多 项式的加法,减法和乘法操作
7个回归分析方法 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。 这种技术通常用于 预测分析、 时间序列模型 以及发现变量之间的因果关系。 例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。 在这里,我们使用曲线/线来拟合这些数据点, 在这种方式下,从曲线或线到数据点的距离差异最小。 我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。 下面,让我们举一个简单的例子来理解它: 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。 现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。 那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。 具体如下: • 它表明自变量和因变量之间的显著关系 它表明多个自变量对一个因变量的影响强度 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。 这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。 这些技术主要有三个度量 (自变量的个数, 因变量的类型 回归线的形状)。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。 但在你开始之前,先了解如下最常用的回归方法: 1. 线性回归(Linear Regression) 线性回归通常是人们在学习预测模型时首选的技术之一。 在这种技术中, 因变量是连续的, 自变量可以是连续的也可以是离散的, 回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线) 在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即 Y=a+b*X + e, 其中a表示截距, b表示直线的斜率, e是误差项。 这个方程可以根据给定的预测变量(s)来预测目标变量的值。 现在的问题是:我们如何得到一个最佳的拟合线呢? 这个问题可以使用最小二乘法轻松地完成。 一元线性回归和多元线性回归的区别在于, 多元线性回归有(>1)个自变量, 而一元线性回归通常只有1个自变量。 最小二乘法也是用于拟合回归线最常用的方法。 对于观测数据,它通过最小化每个数据点到线的垂直偏差平方和来计算最佳拟合线。 因为在相加时,偏差先平方,所以正值和负值没有抵消。 我们可以使用R-square指标来评估模型性能。 要点: • 自变量与因变量之间必须有线性关系 • 多元回归存在多重共线性,自相关性和异方差性 线性回归对异常值非常敏感。它会严重影响回归线,最终影响预测值 多重共线性会增加系数估计值的方差,使得在模型轻微变化下,估计非常敏感。 结果就是系数估计值不稳定, 在多个自变量的情况下,我们可以使用向前选择法,向后剔除法和逐步筛选法来选择最重要的自变量。 2. 逻辑回归(Logistic Regression) 逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。 当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,我们就应该使用逻辑回归。 这里,Y的值从0到1,它可以用下方程表示。 odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence ln(odds) = ln(p/(1-p)) logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk 概要 上述式子中,p表述具有某个特征的概率。 你应该会问这样一个问题:我们为什么要在公式中使用对数log呢? 因为在这里我们使用的是的二项分布(因变量),我们需要选择一个对于这个分布最佳的连结函数。 它就是Logit函数。 在上述方程中,通过观测样本的极大似然估计值来选择参数, 而不是最小化平方和误差(如在普通回归使用的)。 要点: • 它广泛的用于分类问题。 逻辑回归不要求自变量和因变量是线性关系。 它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。 逻辑回归是用于分类的~这个得记住 为了避免过拟合和欠拟合,我们应该包括所有重要的变量。 有一个很好的方法来确保这种情况, 就是使用逐步筛选方法来估计逻辑回归。 它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。 自变量不应该相互关联的,即不具有多重共线性。 然而,在分析和建模中,我们可以选择包含分类变量相互作用的影响。 • 如果因变量的值是定序变量,则称它为序逻辑回归 • 如果因变量是多类的话,则称它为多元逻辑回归 3. 多项式回归(Polynomial Regression) 对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。 如下方程所示:y=a+b*x^2 在这种回归技术中,最佳拟合线不是直线。 而是一个用于拟合数据点的曲线。 重点: 虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。 你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。 下面是一个图例,可以帮助理解: 明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。 更高次的多项式最后可能产生怪异的推断结果。 4. 逐步回归(Stepwise Regression) 在处理多个自变量时,我们可以使用这种形式的回归。 在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。 这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。 逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。 下面列出了一些最常用的逐步回归方法: • 标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。 • 向前选择法从模型中最显著的预测开始,然后为每一步添加变量。 • 向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显着性的变量。 这种建模技术的目的是使用最少的预测变量数来最大化预测能力。 这也是处理高维数据集的方法之一。 5. 岭回归(Ridge Regression) 岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。 在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。 岭回归通过给回归估计上增加一个偏差度,来降低标准误差。 上面,我们看到了线性回归方程。还记得吗? 它可以表示为:y=a+ b*x 这个方程也有一个误差项。完整的方程是: y=a+b*x+e (error term) , [error term is the value needed to correct for a prediction error between the observed and predicted value] => y=a+y= a+ b1x1+ b2x2+....+e, for multiple independent variables. 在一个线性方程中,预测误差可以分解为2个子分量。 一个是偏差, 一个是方差。 预测错误可能会由这两个分量或者这两个中的任何一个造成。 在这里,我们将讨论由方差所造成的有关误差。 岭回归通过收缩参数λ(lambda)解决多重共线性问题。 看下面的公式: 在这个公式中,有两个组成部分。 第一个是最小二乘项, 另一个是β2(β-平方)的λ倍,其中β是相关系数。 为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。 要点: 除常数项以外,这种回归的假设与最小二乘回归类似; 它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能,这是一个正则化方法,并且使用的是L2正则化。 6. 套索回归(Lasso Regression) 它类似于岭回归。 Lasso (Least Absolute Shrinkage and Selection Operator)也会惩罚回归系数的绝对值大小。 此外,它能够减少变化程度并提高线性回归模型的精度。 看看下面的公式: Lasso 回归与Ridge回归有一点不同,它使用的惩罚函数是绝对值,而不是平方。 这导致惩罚(或等于约束估计的绝对值之和)值使一些参数估计结果等于零。 使用惩罚值越大,进一步估计会使得缩小值趋近于零。 这将导致我们要从给定的n个变量中选择变量。 要点: • 除常数项以外,这种回归的假设与最小二乘回归类似 • 它收缩系数接近零(等于零),确实有助于特征选择 这是一个正则化方法,使用的是L1正则化 7. 回归(ElasticNet) ElasticNet是Lasso和Ridge回归技术的混合体。 它使用L1来训练并且L2优先作为正则化矩阵。 当有多个相关的特征时,ElasticNet是很有用的。 Lasso 会随机挑选他们其中的一个,而ElasticNet则会选择两个。 Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。 要点: 它可以承受双重收缩 • 选择变量的数目没有限制 • 在高度相关变量的情况下,它会产生群体效应 除了这7个最常用的回归技术,你也可以看看其他模型,如Bayesian、Ecological和Robust回归。 如何正确选择回归模型? 当你只知道一个或两个技术时,生活往往很简单。 我的老师曾告诉我,如果结果是连续的,就使用线性回归。 如果是二元的,就使用逻辑回归! 然而,在我们的处理中,可选择的越多,选择正确的一个就越难。 类似的情况下也发生在回归模型中。 在多类回归模型中,基于自变量和因变量的类型,数据的维数以及数据的其它基本特征的情况下,选择最合适的技术非常重要。 以下是你要选择正确的回归模型的关键因素: 1. 数据探索是构建预测模型的必然组成部分 在选择合适的模型时,比如识别变量的关系和影响时,它应该首选的一步。 2. 比较适合于不同模型的优点,我们可以分析不同的指标参数 如统计意义的参数,R-square,Adjusted R-square,AIC,BIC以及误差项,另一个是Mallows' Cp准则。 这个主要是通过将模型与所有可能的子模型进行对比(或谨慎选择他们),检查在你的模型中可能出现的偏差。 3. 交叉验证是评估预测模型最好额方法 在这里,将你的数据集分成两份(一份做训练和一份做验证)。 使用观测值和预测值之间的一个简单均方差来衡量你的预
### 回答1: 一元多项式相加是在数据结构中比较基础的一部分,也是我们在数学中常见的操作。在计算机中,我们通常将多项式看作一个数组(或链表)的形式,其中数组下标表示该项的指数,数组中存放的值表示该项的系数。两个多项式相加就是将两个数组对应项的系数相加得到一个新的数组。 具体步骤如下: 1. 定义一个数组(或链表)来存放结果多项式,长度为两个原始多项式中指数最大的项数加1。 2. 遍历两个原始多项式数组(或链表),将对应项的系数相加,赋值给结果数组的对应项。 3. 返回结果数组(或链表)。 当然,在实现过程中还需注意以下几点: 1. 若某个多项式存在系数为0的项,则计算时应该忽略该项,即不将其对应项相加到结果数组中。 2. 当两个原始多项式不等长时,需在系数较短的数组中补0,使其长度与较长数组相等。 3. 若相加的结果系数为0,则结果多项式也应该忽略该项,即不将其加入到结果数组中。 总之,一元多项式的加法并不复杂,只需遍历数组,将对应项的系数相加即可。需要注意的是,在实现过程中考虑越界以及忽略系数为0的项这些问题。 ### 回答2: 一元多项式的运算主要包括加、减、乘和求导等,其中加法是最基本的一种运算。在数据结构中,我们可以用链表来表示一元多项式,在链表中每个结点表示一个单项式,包含系数和指数两个数据项。对于两个一元多项式的相加,则需要对它们的各个单项式进行合并,合并的方法是按照单项式的指数大小进行排序,然后分别将同一指数的单项式的系数相加得到新的单项式,最终得到一个新的一元多项式。 具体实现上,可以通过定义一个新的链表来存储结果,然后使用两个指针分别遍历两个原始的链表,根据两个指针所对应的单项式的指数关系来决定需要将哪个单项式加入到结果链表中。需要注意的是,在遍历的过程中,如果出现同一指数的单项式,则需要将它们的系数相加得到新的单项式,否则直接将单项式插入结果链表中即可。 在实现过程中,可以使用一个小技巧来简化代码,即使用一个哑结点作为结果链表的头结点,这样就可以省略对链表进行空判断的代码。同时,为了提高运算效率,可以对原始链表进行排序,使得它们的单项式按照指数大小排列,从而便于遍历和合并。 综上所述,一元多项式的相加需要按照单项式的指数大小进行排序,然后遍历两个原始链表,合并同一指数的单项式并插入结果链表中,最终得到一个新的一元多项式。具体实现需要考虑空链表和排序等细节问题。 ### 回答3: 一元多项式相加数据结构中的一个重要问题。我们需要定义一个多项式的结构体,同时考虑到指数可能不是连续的整数,我们需要使用链表来保存每一项的系数和指数。具体来说,结构体的定义如下: ```c typedef struct node { int coefficient; // 系数 int exponent; // 指数 struct node* next; // 下一项 } polynomial; ``` 接下来,我们可以先将两个多项式按指数从小到大排序,然后使用“归并”算法将它们相加。具体来说,分别遍历两个多项式的链表,按指数大小比较,将系数较小的项插入结果链表,并且修改指针。最后,如果有多余项,直接将它们接在结果链表的末尾即可。 具体实现如下: ```c polynomial* add(polynomial* p1, polynomial* p2) { polynomial* result = (polynomial*)malloc(sizeof(polynomial)); polynomial* cur = result; while (p1 && p2) { if (p1->exponent < p2->exponent) { cur->next = p1; p1 = p1->next; } else if (p1->exponent > p2->exponent) { cur->next = p2; p2 = p2->next; } else { cur->next = p1; cur->next->coefficient += p2->coefficient; p1 = p1->next; p2 = p2->next; } cur = cur->next; } cur->next = p1 ? p1 : p2; return result->next; } ``` 最后,记得要释放内存。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Want595

感谢小伙伴的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值