请问在 1(含)到 1000000 (含)中,有多少个质数的各个数位上的数字之和为 23 。(蓝桥杯校内模拟赛第十三期)

第三题

【问题描述】

只能被 1 和本身整除的数称为质数。

请问在 1 (含)到 1000000 (含)中,有多少个质数的各个数位上的数字之和为 23 。

提示:599 就是这样一个质数,各个数位上的数字之和为 5+9+9=23 。

【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

【答案】     5503

废话不多说,直接上代码:

#include<iostream>
#include<cmath>   // sqrt()的头文件 
using namespace std;

// 判断是否是质数(素数) 
int is_prim(int i){
	for(int j = 2; j <= sqrt(i); j++){   
		if(0 == i % j){
			return false;
		}
	}
	return true;
}

int main(void){	
// int类型的范围是-2^31~2^31-1,即-2147483648~2147483647
	int sum = 0;    
	int num = 0;	
	int tem = 0;	
	bool flag = 0;  
	
	for(int i = 1; i <= 1000000; i++){   //遍历所有的数 
		if(is_prim(i)){	  // 调用函数判断是否为质数		
			tem = i;
			string s = to_string(tem);   // 将int类型的tem 转为 string类型的 s 
			num = 0;
			// 利用迭代器遍历每一个字符 
			for(auto p = s.begin(); p != s.end(); p++){   
				num += *p - 48;	  // *P 为ASCII表上字符对应的十进制数 
			}
			if(23 == num){
				sum++;
			}
		}
	}	
	cout << sum << endl;
     
    return 0;
}

若以上内容存在错误或不足,请在评论区或私信指出。

respect!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值