第三题
【问题描述】
只能被 1 和本身整除的数称为质数。
请问在 1 (含)到 1000000 (含)中,有多少个质数的各个数位上的数字之和为 23 。
提示:599 就是这样一个质数,各个数位上的数字之和为 5+9+9=23 。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
【答案】 5503
废话不多说,直接上代码:
#include<iostream>
#include<cmath> // sqrt()的头文件
using namespace std;
// 判断是否是质数(素数)
int is_prim(int i){
for(int j = 2; j <= sqrt(i); j++){
if(0 == i % j){
return false;
}
}
return true;
}
int main(void){
// int类型的范围是-2^31~2^31-1,即-2147483648~2147483647
int sum = 0;
int num = 0;
int tem = 0;
bool flag = 0;
for(int i = 1; i <= 1000000; i++){ //遍历所有的数
if(is_prim(i)){ // 调用函数判断是否为质数
tem = i;
string s = to_string(tem); // 将int类型的tem 转为 string类型的 s
num = 0;
// 利用迭代器遍历每一个字符
for(auto p = s.begin(); p != s.end(); p++){
num += *p - 48; // *P 为ASCII表上字符对应的十进制数
}
if(23 == num){
sum++;
}
}
}
cout << sum << endl;
return 0;
}
若以上内容存在错误或不足,请在评论区或私信指出。
respect!