自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 GraphRAG研究总结:从技术演进到领域落地的多维分析

GraphRAG在2024-2025年实现了从“基础框架”到“动态智能”的技术跃迁,同时在教育、医疗、金融等领域完成深度渗透。其发展历程表明,技术突破需紧扣领域需求,而领域拓展又反哺技术成熟。未来,随着“图谱质量提升”“效率优化”“多模态融合”等问题的解决,GraphRAG有望成为LLMs在知识密集型任务中的核心增强范式,为各行业的智能升级提供关键支撑。

2025-10-09 01:13:17 742

原创 GraphRAG国内外研究文献分析

该文献是GraphRAG领域的奠基性综述,首次系统性梳理了GraphRAG的技术框架、研究脉络与核心挑战,为后续研究提供了清晰的理论图谱和方向指引。其核心价值在于填补了LLMs与知识图谱(KGs)结合领域的综述空白,明确了GraphRAG作为“解决LLMs幻觉、领域知识缺失、复杂关系处理能力弱”的关键范式地位。针对传统GraphRAG“单次静态检索”的局限性——无法应对需要多轮推理的复杂任务(如“某药物通过抑制哪种蛋白来治疗某疾病”,需检索“药物-靶点蛋白”“靶点蛋白-疾病通路”两步关联),聚焦“迭代检索”

2025-10-09 01:12:57 560

原创 深度学习算法

深度学习作为机器学习的一个分支,其核心在于通过多层神经网络从大量数据中学习和提取复杂特征,从而在多种应用领域取得显著成就 (Dong et al., 2021)(JayaSree & Rao, 2022)。

2025-09-21 01:07:22 595

原创 ViT视觉模型的基本原理和架构,以及国内外研究

ViT作为计算机视觉领域的一个里程碑式工作,其将Transformer架构引入图像处理的创新性得到了广泛认可 (Chai, 2024)(Fu, 2022)。尽管在计算复杂度和对数据量需求方面存在挑战,但国内外研究者通过持续的架构改进、效率优化、混合模型设计以及在多领域应用探索,不断推动着ViT及其衍生模型的发展 (Zhou et al., 2024)(Cai et al., 2023)(Bai et al., 2023)(Jamil et al., 2022)。

2025-09-21 00:56:51 605

原创 BERT模型的基本结构和原理及国内外研究

BERT的成功也促使其在多模态领域得到应用。例如,医学领域的BERT模型通过在医学文本语料库上进一步预训练来提升在医学信息提取任务上的表现(Wada et al., 2020)(Wada et al., 2020)(Hu et al., 2024)(Ghazikhani & Butler, 2023)。:预训练后的BERT模型通过添加一个额外的输出层,可以在各种下游NLP任务上进行微调(Devlin et al., 2019)(Zhang et al., 2023)(Bu et al., 2024)。

2025-09-20 11:44:54 625

原创 Transformer模型的架构、原理及国内外研究

Transformer模型的核心是自注意力机制,它通过计算输入序列中不同位置之间的相关性来捕获长距离依赖。多头注意力机制则允许模型从不同的“角度”或“表示子空间”同时关注信息,从而增强了模型的表达能力(Xu et al., 2020)(Xiao et al., 2021)(Li et al., 2025)。

2025-09-20 11:32:31 1005

原创 GraphRAG 中 GNN 的深层嵌入

要理解 GraphRAG 中用于 “深层嵌入” 的 GNN(图神经网络),需先明确其核心价值 ——,解决传统嵌入方法(如 Node2Vec)无法捕捉复杂依赖、不支持动态图的问题。

2025-08-18 21:31:46 602

原创 GraphRAG 三种生成模式的区别

要输出人能看懂的自然语言 —— 比如 “解释胃酸反流该用什么药”“总结 10 篇论文的核心观点”。核心工具是LLM(大语言模型,比如 GPT-4、LLaMA),但 LLM 只懂文字,所以要先把 “图数据” 转成它能理解的形式,再让它生成文本。

2025-08-18 21:31:23 631

原创 GraphRAG 综述:图结构如何重构检索增强生成的技术边界?

GraphRAG:突破传统RAG局限,专为图结构数据设计的检索增强生成框架

2025-08-18 21:30:58 1771

原创 KAG各模块的实现逻辑

KAG各模块通过结构化知识表示、双向索引、逻辑推理、语义对齐和模型微调,实现了专业领域的精准问答。实际应用中需结合知识图谱数据库(如Neo4j)、向量存储(如Milvus)和大模型API(如GPT-3.5),代码会更复杂,但核心逻辑可参考上述示例。

2025-07-09 01:09:51 1649

原创 KAG:让大模型在专业领域更“专业”的创新框架

KAG 就像给大模型装了一个 “专业大脑插件”:用知识图整理知识,用逻辑规则拆解问题,用语义对齐统一表达,让大模型在处理法律、医疗等复杂问题时,能像专家一样 “有理有据、步步推理”,而不是靠 “猜” 或 “搜关键词凑答案”。这也是它在专业领域比 RAG 和 GraphRAG 更有效的核心原因。

2025-07-06 01:01:50 1240 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除