自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 《图像分割与 U-Net:开启精准视觉解析之门》

2. 多尺度特征融合:通过跳跃连接(skip connection)将收缩路径中的不同层次的特征图与扩张路径中的相应层次的特征图进行连接,实现了低级特征和高级特征的融合。收缩路径用于提取图像的特征,扩张路径用于恢复图像的分辨率并进行像素级别的分类。例如,在肝脏分割、肺部结节分割、视网膜血管分割等任务中,U-Net 能够准确地识别和分割出目标器官或病变组织,为医生提供了重要的诊断信息。2. 收缩路径的最后一层特征图进入扩张路径,通过一系列的上采样和卷积操作,逐渐恢复图像的分辨率并进行像素级别的分类。

2024-10-18 14:00:56 775

原创 《YOLOv5 结构解析与可视化工具介绍》

通过 PAN 流程,模型可以更好地处理不同大小的目标,尤其是对于小目标的检测能力有显著的提升。同时,对其核心模块如 Focus 模块、Bottleneck CSP 模块和 PAN 流程的分析,有助于我们更好地掌握该算法的优势和局限性。通过配置 Netron(详情可参考 https://github.com/lutzroeder/netron),并使用其桌面版(https://lutzroeder.github.io/netron/),我们可以直观地查看模型的结构和参数。

2024-10-18 13:52:29 464

原创 YOLO V5:目标检测的强大算法

或者在更复杂的场景下,如低光照、恶劣天气等条件下,提高模型的检测精度和鲁棒性。例如,输入的 512×20×20 的特征图经过 1×1 的卷积层后输出 256×20×20 的特征图,再经过并列的三个最大池化操作,将结果与其初始特征相加,输出 1024×20×20 的特征图,最后用 512 的卷积核将其恢复到 512×20×20 的特征图。在训练时,仍然采用传统的填充方式将图片缩放到固定大小(如 416×416),而在测试和使用模型推理时,则采用缩减黑边的方式,减少了图像的计算量,提高了目标检测和推理的速度。

2024-10-12 17:28:03 1635

原创 YOLO V2、V3、V4:目标检测领域的璀璨星辰

以图像数据为例,无论是明亮还是昏暗场景下的图片数据,经过批归一化后,都能以更稳定的特征分布参与模型训练,从而加快了收敛速度,使得模型能够更快地学习到有效的特征模式,并且在不同数据分布的情况下具有更强的泛化能力。通过在多种尺度图像上进行训练,模型能够适应不同大小目标物体的检测任务,增强了对尺度变化的适应性,在实际应用场景中,无论是远距离拍摄的小目标还是近距离拍摄的大目标,都能准确检测。通过采用创新的特征融合和传递策略,如巧妙设计的上采样、下采样和侧向连接操作,将不同层次的特征信息充分融合。

2024-10-12 17:20:59 641

原创 深度学习目标检测

另一部分是位置损失,用于衡量目标位置的预测准确性,常用的损失函数有均方误差(MSE)、交并比损失(IoU Loss)、广义交并比损失(GIoU Loss)、距离交并比损失(DIoU Loss)等。最终的预测结果是7x7x30的张量,其中7x7表示网格的数量,30包含了两个边界框的5个预测值(共10个值)和20个类别的概率。• 定位误差:使用平方误差来计算预测的边界框中心坐标与真实坐标之间的差异,对于边界框的宽和高,则使用平方根误差,这样可以降低对大尺寸边界框的误差惩罚,使模型更关注小尺寸边界框的误差。

2024-10-10 19:42:16 1349 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除