- 博客(1)
- 收藏
- 关注
原创 多视图特征选择
是从对事物的不同角度的理解生成多个特征描述视图,对比单视图,多视图能够发挥各个视图的优势,把同一数据表示成多个特征集,然后在每个特征集上可以用不同的方法进行学习,引入了一个函数去模型化一个特定的视角,并且利用相同输入的冗余视角去联合优化所有函数,最终提高学习效果。在故障诊断的实际应用中,通常使用不同的方法提取特征,包括时域、频域、时频域的方法。.],但是同一视图内不同特征之间以及不同视图不同特征之间必然存在冗余问题,从多个视图中选择合适的特征子集进行分类,可有效提高分类的性能和效率。个视图的对称中心矩阵,
2023-09-12 17:27:18 323
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人