MySql使用binlog还原数据

MySql使用binlog还原数据

小编平时操作数据库都很谨慎,特别涉及到数据的增删改的时候,都会反复检查一下sql语句的逻辑性是否准确,但是人有失手马有失蹄,终于在某次操作的时候把表给清了,十几万数据没了,出现这种问题第一反应就应该是赶紧找备份,但是发现没有备份,所以只能寄希望于binlog恢复,也总结了此次binlog使用经验,跟大家分享一下

1. 确认是否符合binlog恢复条件

发现误操作了以后,第一时间是停止进行其他操作,这样方便进行数据的定位

  1. 确认binlog是开启状态

    show variables like '%log_bin%';
    

在这里插入图片描述

  1. 查看binlog使用哪种模式

    1. Statement模式,此种格式会记录执行的sql,并不会记录每一行的变化,极大的减少了日志量

    2. row模式,会记录执行的sql以及每一行的数据变化,如果binlog是这种模式,肯定可以对数据进行恢复

    3. Mixed模式,是statement和row模式的混合体,由系统判断使用哪种模式

    上述三种格式中如果使用的是row模式,恢复起来就比较容易了,通过如下命令查看

    show variables like '%binlog_format%';
    

在这里插入图片描述

  1. 查看当前binlog文件

    show master status;
    

在这里插入图片描述

上述命令是用来查看当前使用的binlog,也可以使用如下命令查看所有binlog文件

show binary logs;

在这里插入图片描述

2. 恢复数据操作

  1. 查找要恢复的节点

    show binlog events in 'binlog.000003';
    

在这里插入图片描述

上图中标注了几个重要的点要解释一下

  1. 第一行标注,1355是开始节点,info中是BEGIN
  2. 第二行标注,test.test1表示是test库中的test1表进行的操作
  3. 第三行标注,执行的操作类型,此处是写入行操作
  4. 第四行标注,1564是此操作的结束节点

可以通过这些节点信息的筛选可以大致确定一些节点信息

如果在上述操作中,不能完全准确的找到节点,需要binlog内容解析出来,进行精确查找

mysqlbinlog --no-defaults --base64-output=decode-rows -vv --start-position=1355 --stop-position=3933 --database=test /usr/local/mysql/data/binlog.000003> /root/test1.sql

上述命令简单介绍一下

  1. –no-defaults用来设置编码的,在win系统中有时候出现编码不一致的情况,此时如果不加此参数就会出现如下报错
  ```
  mysqlbinlog: [ERROR] unknown variable 'default-character-set=utf8'
  ```
  1. –base64-output=decode-rows -vv这是两个参数,用来生成可视化日志文件的,如果加上这两个参数,就不要生成sql文件,直接生成txt文件,分析执行的数据以便确定节点

  2. –start-position=1355 --stop-position=3933 开始节点和结束节点,有时也会使用时间来圈定范围,只需要将节点参数换成时间参数即可–start-datetime=“2023-10-28 05:43:53” --stop-datetime=“2023-10-28 05:50:01”,时间的格式按照上述格式,需要注意的是,如果出现下述错误,需要检查结束节点内是否包含完整的执行日志,如下图结束点为5678才是完整的记录,如果结束点为5521,就会报错,如果在除5678之外的其他节点上,虽然可以生成sql文件,但是执行会有问题

    WARNING: The range of printed events ends with a row event or a table map event that does not have the STMT_END_F flag set. This might be because the last statement was not fully written to the log, or because you are using a --stop-position or --stop-datetime that refers to an event in the middle of a statement. The event(s) from the partial statement have not been written to output.
    

在这里插入图片描述

  1. –database=test 选择要恢复的数据库

  2. /usr/local/mysql/data/binlog.000003 要使用的binlog文件

  3. > /root/test1.sql将内容输出到文件

  4. 直接使用命令恢复

    ./mysqlbinlog --start-position=开始节点 --stop-position=结束节点 --database=库名 /usr/local/mysql/data/binlog.000003 | mysql -h ip地址 -P 端口号 -uroot -p
    
  5. 生成sql文件恢复

    1. 生成sql文件

      ./mysqlbinlog --no-defaults --start-position=1355 --stop-position=3933 --database=test /usr/local/mysql/data/binlog.000003> /root/test1.sql
      
    2. 进入数据库

      #连接数据库
      mysql -h ip地址 -P 端口号 -uroot -p
      
    3. 执行文件

      -- 打开数据库
      use 库名称
      -- 执行sql文件
      source /root/test1.sql
      
  6. 生成文本文件,通过提取数据进行恢复

    ./mysqlbinlog --no-defaults --base64-output=decode-rows -vv --start-position=1355 --stop-position=3933 --database=test /usr/local/mysql/data/binlog.000003> /root/test1.txt
    

    此处不再赘述怎么提取内容进行操作,我进行操作的时候是因为数据是很长时间存储的,已经无法通过语句还原进行操作了,所以使用了提取内容进行解析,反向生成插入语句的方式,下面简单介绍一下如何反向解析

    1. 首先将误操作的内容提取出来,如下图

      在这里插入图片描述

      此处标出了此条记录操作之前的内容,需要对这个内容进行提取

    2. 提取内容的方式

      我是使用java进行解析的,原理是先判断此块内容属于误操作内容,对里面的字段通过正则提取,然后拼接成(值1,值2)的字符串存入一个集合,这样所有误操作之前的数据就提取出来了,对集合的内容进行拼接成插入语句的形式,其中insert into 表名(字段名1,字段名2)属于固定模板,所以我开始直接每一条数据拼接为一条语句,这样拼接了十几万的插入语句,效率不尽人意,所以更改了策略,每五百条拼接为一条插入语句,这样执行起来效率就特别快了,等有时间我做一个可以解析增删改生成反向语句的小工具,有需要的小伙伴可以@我哦,因为时间原因,将我操作的简易版代码先给小伙伴们参考一下

      代码如下

      
          /**
           * 此处传入的文件是从binlog里面导出的txt文件,导出语句加了--base64-output=decode-rows -vv的哦
           * @param file
           * @throws IOException
           */
          public static void run(File file) throws IOException {
              BufferedReader bf = new BufferedReader(new FileReader(file));
              String line = null;
              int i = 0;
              List<String> list = new ArrayList<>();
              for (int j = 0; j < 2193510; j++) {
                  line = bf.readLine();
                  if ("### DELETE FROM `test`.`test1`".equals(line)) {
                      bf.readLine();
      
                      Matcher p1 = Pattern.compile("(?<=(@1=)).*(?=( /\\* ))").matcher(bf.readLine());
                      p1.find();
                      String value1 = p1.group();
      
                      Matcher p2 = Pattern.compile("(?<=(@2=)).*(?=( /\\* ))").matcher(bf.readLine());
                      p2.find();
                      String value2 = p2.group();
      
                      list.add("(" + value1 + "," + value2 + ")");
                      i++;
                  }
              }
              List<String> sql = new ArrayList<>();
              //批量操作每条语句设置插入的条数
              int batch = 500;
              //起始下标
              int start = 0;
              while(start < list.size()){
                  if ((start+batch)<list.size()){
                      String pinjie = pinjie(list.subList(start, start + batch));
                      sql.add(pinjie);
                  } else {
                      String pinjie = pinjie(list.subList(start,list.size()));
                      sql.add(pinjie);
                  }
                  start += batch;
              }
              File file1 = new File("D:/insert/file.txt");
              file1.createNewFile();
              BufferedWriter bw = new BufferedWriter(new FileWriter(file1));
              for (String s : sql) {
                  bw.write(s);
                  bw.newLine();
              }
              bw.flush();
              bw.close();
              bf.close();
      
              System.out.println(i);
          }
      
          public static String spliceSql(List<String> list){
              String sql = "insert into `test`.`test1`(id,name) values";
              for (int i = 0; i < list.size(); i++) {
                  sql += list.get(i);
                  if (i < list.size()-1){
                      sql += ",";
                  } else {
                      sql += ";";
                  }
              }
              return sql;
          }
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值