- 博客(68)
- 收藏
- 关注
原创 系统开发的环境配置(SpringBoot,mysql,vue等)
本文介绍了JDK、Maven、SpringBoot和Vue开发环境的配置方法。主要内容包括:JDK安装及环境变量设置;Maven配置文件修改(本地/外部仓库位置);在IDEA中配置Maven并修改SpringBoot项目创建地址为阿里云镜像;设置自动编译以启用热启动;Node.js安装及Vue CLI脚手架安装;Vue项目创建与启动;以及解决Windows权限问题的操作步骤(修改执行策略为RemoteSigned)。这些配置适用于SpringBoot 2.X和JDK8环境。
2025-12-26 13:36:39
255
原创 钢铁表面缺陷检测-金属表面缺陷检测-YOLO-毕设项目
本文介绍了基于YOLO系列算法的钢铁表面缺陷检测项目。该项目针对传统人工检测效率低、精度差的问题,采用YOLOV5/V8/V10/V11等模型进行优化改进,包括使用深度可分离卷积、全维度动态卷积模块等技术实现模型轻量化。项目包含3600张钢铁缺陷图像数据集,涵盖裂纹、夹杂物等6类缺陷。通过改进卷积模块和损失函数,提升了模型对小目标和遮挡目标的检测能力。最终基于PYQT5开发了GUI演示系统,支持图片、视频等多种输入检测。该项目不仅具有学术价值,也为工业质检提供了智能化解决方案,有助于提升生产安全和产品质量。
2025-12-26 13:28:07
668
原创 道路缺陷检测-道路病害-YOLO模型-毕业设计
本文介绍了基于YOLO系列模型的道路缺陷检测项目,包含完整的技术实现与创新改进。项目使用YOLOv5/v8/v10/v11等模型,针对道路裂缝、坑洞等缺陷进行检测,提出了四项优化:1)采用深度可分离卷积实现轻量化;2)引入全维度动态卷积提升特征提取能力;3)融合卷积与注意力机制增强遮挡检测;4)使用自适应阈值焦点损失解决类别不平衡问题。项目包含数据集(4类共11104张图像)、多模型对比实验、GUI演示系统(PYQT5实现)等完整内容,通过详细视频教程(4-6小时)讲解环境配置、代码使用及论文写作全过程,特
2025-12-13 13:50:06
903
原创 Django项目css文件不生效
Django无法加载CSS样式的解决方案:检查浏览器调试工具确认CSS文件已加载但样式丢失时,可能是Windows注册表设置问题。解决方法:1) Win+R打开注册表(regedit);2) 找到HKEY_CLASSES_ROOT-.css;3) 将ContentType值从application/x-css改为text/css;4) 重启电脑并强制刷新浏览器(Ctrl+Shift+R)。此方法适用于Django admin和自定义HTML页面样式丢失的情况。
2025-12-13 13:40:26
216
原创 遥感检测-YOLO-毕设项目
基于YOLO系列算法的遥感目标检测项目。项目包含YOLOv5/v8/v10/v11四种模型,并针对遥感场景进行了四项优化:1)采用深度可分离卷积实现轻量化;2)引入全维度动态卷积提升特征提取能力;3)融合卷积与注意力机制增强遮挡检测;4)使用自适应阈值焦点损失解决类别不平衡问题。项目配套4-6小时详细教程,涵盖环境配置、代码使用、论文写作等内容,并提供1600张标注图像数据集和两种风格的GUI演示系统,实现从算法优化到实际应用的完整闭环
2025-12-08 15:40:56
1073
原创 16系显卡训练yolo出现Nan等问题
本文总结了解决YOLOv8和YOLOv5训练问题的调试方法。主要针对GTX16系列显卡出现的训练异常,包括:1)在train.py中禁用AMP(amp=False);2)修改half相关参数为False或float;3)验证阶段将half操作替换为float。这些调整可有效解决训练时出现的NaN值和验证指标全为0的问题。调试方法涉及engine/validator.py等核心文件的参数修改,适用于类似显卡兼容性问题排查。
2025-12-08 14:31:44
207
原创 手势识别检测-YOLO-毕设项目
本文介绍了基于YOLO系列模型的手势检测项目,包含YOLOv5/v8/v10/v11等多种模型实现及优化改进。项目通过深度可分离卷积、全维度动态卷积等技术创新提升模型性能,并开发了GUI演示系统支持图片/视频/摄像头检测。作者在B站和CSDN平台分享了详细教程(4-6小时视频)和项目源码,涵盖环境配置、代码使用、论文写作等全流程内容。该手势识别技术可应用于人机交互、无障碍服务等领域,具有学术价值和实践意义。项目特色包括多模型对比实验、创新优化点以及完整的演示系统实现。
2025-12-06 17:37:30
1215
原创 Anaconda使用--在指定位置创建虚拟环境
本文介绍了如何将Anaconda虚拟环境安装到指定目录而非默认的C盘。首先打开Anaconda控制台,使用conda info --envs查看当前环境,然后通过conda create --prefix=指定路径 python=版本号命令在目标位置创建新环境。该方法能有效解决C盘空间不足问题,以D盘为例展示了具体操作步骤。
2025-12-06 17:26:54
305
原创 吸烟检测识别-YOLO-毕设项目
本文介绍了基于YOLO系列算法的吸烟检测项目,包含技术实现、模型优化和应用展示。项目使用8866张标注图片,实现了YOLOv5/v8/v10/v11四种模型,并进行了四项改进:1)采用深度可分离卷积实现轻量化;2)添加全维度动态卷积提升特征提取;3)引入卷积注意力融合模块增强遮挡检测;4)使用自适应阈值焦点损失改善类别不平衡问题。项目包含多模型对比实验、GUI演示系统(提供两种界面风格),支持图片/视频/摄像头输入检测。通过算法优化和系统实现,该项目为公共场所吸烟监管提供了智能化解决方案,兼具学术价值和实践
2025-11-28 19:18:14
760
原创 跌倒检测-老人防护-YOLO-毕设项目
本文介绍了一个基于YOLO系列算法的老人跌倒检测项目,包含YOLOV5/V8/V10/V11等多种模型实现及优化改进。项目采用8719张图片的数据集,通过四种技术改进:1)使用可分离卷积实现模型轻量化;2)添加全维度动态卷积模块提升特征提取能力;3)引入卷积和注意力融合模块增强遮挡检测;4)采用自适应阈值焦点损失函数处理类别不平衡。项目包含详细视频教程(4-6小时)、数据集配置、代码实现及两种风格的GUI演示系统,支持图片/视频/摄像头输入检测。研究成果在老人安全防护领域具有实际应用价值,通过技术手段解决养
2025-11-27 17:05:27
829
原创 火灾检测-深林火灾检测-YOLO-毕设项目
摘要:本文介绍了一个基于YOLO系列算法的森林火灾检测项目,包含YOLOv5/v8/v10/v11四种模型实现及优化改进。项目使用9K+张图片数据集,包含火焰和烟雾两类目标。主要改进包括:1)采用深度可分离卷积实现模型轻量化;2)引入全维度动态卷积模块提升特征提取能力;3)添加卷积-注意力融合模块增强遮挡检测;4)使用自适应阈值焦点损失解决类别不平衡问题。项目提供完整的训练日志、对比实验图表和两种风格的GUI演示系统(支持图片/视频/摄像头输入),实现了从算法优化到应用落地的完整流程,为生态安全监测提供技术
2025-11-26 13:15:53
922
原创 安检X光危险品检测-YOLO-毕设项目
本文介绍了基于YOLO系列算法的X光安检危险品检测项目,包含YOLOv5/v8/v10/v11等多个模型实现及优化改进。项目采用8830张标注图片数据集,包含5类危险品检测。主要改进包括:使用DWConV轻量化主干网络、添加ODConv动态卷积模块、结合卷积与注意力的CAFM模块提升特征提取能力,以及采用ATFL损失函数处理样本不平衡问题。项目提供了完整的训练流程、多模型对比实验和两种风格的GUI演示系统,实现了从算法研究到实际应用的完整闭环,具有较高的学术价值和实践意义。配套视频教程详细讲解项目实现过程。
2025-11-24 15:29:03
995
原创 工地安全帽佩戴检测-YOLO-毕设项目
基于YOLO系列模型的安全帽检测项目。项目包含4-6小时的详细教程视频,涵盖基础知识、环境配置和代码使用。数据集含7438张标注图片,支持YOLOv5/8/10/11四种模型,并进行了轻量化改进(DWConV)、动态卷积(ODConv)、注意力融合(CAFM)和自适应损失函数(ATFL)优化。项目提供Python+PyQt5的GUI演示系统,支持图片/视频/摄像头输入,包含多模型对比实验和完整毕设文档指导。适用于深度学习入门学习和毕业设计参考。
2025-11-16 21:15:24
876
原创 电动车骑行头盔佩戴检测-YOLO-毕设项目
针对电动车骑行者未规范佩戴头盔致安全风险突出,传统监管效率低的问题,本项目构建基于YOLO系列算法的头盔佩戴检测系统。项目采用7366张图片数据集,实现YOLOv5至YOLOv11多模型部署,并通过DWConv、ODConv、CAFM模块及ATFL损失函数完成模型优化。系统可精准识别电动车及头盔佩戴状态,支持图片、视频、摄像头多输入检测,配套两种风格GUI演示系统。实验通过对比曲线与柱状图验证,优化后模型在复杂场景下检测性能显著提升,为交通安全监管提供高效技术支撑,兼具学术价值与实用意义。
2025-11-14 15:44:04
762
原创 电动车违规进入电梯检测-YOLO-毕设项目
摘要:本项目基于YOLO系列算法开发了电梯电动车违规检测系统,包含YOLOv5/8/10/11等多种模型实现及优化。通过深度可分离卷积、全维度动态卷积等4项改进提升模型性能,构建了4251张图片的数据集。项目提供完整的视频教程(4-6小时)涵盖环境配置、代码使用等,并开发了PyQt5 GUI演示系统,支持图片/视频/摄像头输入。成果包括多模型对比实验、创新优化点和落地应用展示,为社区安全管理提供智能化解决方案。(149字)
2025-11-13 17:36:54
1147
原创 野生动物检测-动物识别 -YOLO-毕设项目
本文介绍了基于YOLO系列算法的野生动物检测项目,该项目使用3298张包含10种野生动物的数据集,实现了YOLOV5/V8/V10/V11四种模型的检测与优化。主要包含四个创新改进:1)采用DWConV卷积实现模型轻量化;2)添加全维度动态卷积模块提升特征提取能力;3)引入卷积和注意力融合模块增强遮挡检测性能;4)使用自适应阈值焦点损失改善类别不平衡问题。项目对比了不同模型的实验结果,并基于PyQt5开发了GUI演示系统,支持图片、视频和摄像头输入检测。该研究为野生动物保护提供了智能监测方案,实现了从理论研
2025-11-12 13:41:11
1565
原创 结核杆菌检测-医疗影像检测 -YOLO-毕设项目
本文介绍了基于YOLO系列算法的结核杆菌医疗影像检测项目。该项目针对传统人工阅片效率低、漏诊率高等痛点,采用YOLOV5/V8/V10/V11等模型进行优化改进,包括使用可分离卷积轻量化模型、添加全维度动态卷积模块、融合卷积和注意力机制等创新点。项目包含1218张标注图片的结核杆菌数据集,通过对比实验验证了改进效果,并基于PYQT5开发了两种风格的GUI演示系统。该研究不仅具有算法探索价值,更能为结核病精准防控提供技术支持,体现了深度学习技术在医疗影像领域的应用潜力。
2025-11-11 17:38:44
1261
原创 肺结节检测-医疗影像 -YOLO-毕设项目
摘要:本文介绍了基于YOLO的肺结节检测项目,该项目使用深度学习技术解决传统人工阅片效率低、漏诊率高的问题。项目采用LUNA16数据集(1600张图片),实现了YOLOV5、V8、V10、V11四种模型,并进行了多项优化改进:1)使用深度可分离卷积实现模型轻量化;2)添加全维度动态卷积模块;3)引入卷积注意力融合模块提升遮挡检测能力;4)采用自适应阈值焦点损失函数处理类别不平衡。项目包含多模型对比实验、详细教程视频(4-6小时)以及两种风格的GUI演示系统,具有显著的临床价值和社会意义。
2025-11-10 16:37:07
1263
原创 蘑菇检测识别-菌检测识别-YOLO-毕设项目
项目涵盖11种有毒/无毒蘑菇种类。项目实现了YOLOv5、v8、v10、v11四种模型,并进行了四项优化改进:1)使用深度可分离卷积实现轻量化;2)添加全维度动态卷积模块;3)引入卷积和注意力融合模块提升小目标检测能力;4)采用自适应阈值焦点损失函数处理类别不平衡问题。项目提供详细讲解视频(4-6小时)和两种GUI演示系统,支持图片/视频/摄像头输入检测,包含多模型对比实验、优化改进和完整落地应用,兼具学术价值和产业应用价值。
2025-10-17 14:50:00
819
原创 苹果新鲜度检测-苹果分级-YOLO-毕设项目
这是一个基于深度学习的苹果新鲜度检测项目,使用YOLO系列模型实现目标检测。项目包含455张标注图片,分为好苹果和坏苹果两类。作者实现了YOLOv5/v8/v10/v11四种模型,并进行了多项优化改进:1)使用深度可分离卷积轻量化模型;2)添加全维度动态卷积模块;3)引入卷积和注意力融合模块提升遮挡检测能力;4)采用自适应阈值焦点损失函数处理类别不平衡。项目包含完整的数据集、代码、训练日志和对比实验结果,最终通过PyQt5开发了两种风格的GUI演示系统,支持图片、视频和摄像头输入检测。该项目不仅适用于学术研
2025-10-16 19:28:23
1294
原创 蓝莓成熟度检测-YOLO模型-毕设项目
本文介绍了基于YOLO系列模型的蓝莓成熟度检测项目。该项目针对传统人工分拣效率低、误差大的问题,利用YOLOV5/V8/V10/V11等模型实现蓝莓成熟度的智能检测。通过455张标注图片(包含青果和熟果),作者对模型进行了四项优化:1)采用深度可分离卷积实现轻量化;2)添加全维度动态卷积模块;3)引入卷积注意力融合模块提升遮挡检测能力;4)使用自适应阈值焦点损失函数处理样本不平衡。项目包含完整的数据集、代码实现、多模型对比实验及两种风格的GUI演示系统,适用于图片、视频和摄像头输入。该方案为智慧农业领域提供
2025-10-15 15:30:45
816
原创 橙子-橘子-成熟度检测识别-YOLO模型-毕设设计
本文介绍了一个基于YOLO模型的橙子成熟度检测项目。项目使用深度学习技术,通过1000张图片构建了5个成熟度类别的数据集,实现了YOLOV5/V8/V10/V11等模型,并进行了四项优化改进:采用深度可分离卷积实现轻量化、添加全维度动态卷积模块、引入卷积注意力融合模块提升遮挡检测能力、使用自适应阈值焦点损失函数处理类别不平衡问题。项目最终开发了基于PYQT5的GUI演示系统,支持图片、视频和摄像头输入检测,为柑橘产业提供智能化的成熟度分级解决方案。
2025-09-29 13:53:34
811
原创 农作物害虫检测-YOLO模型-毕设设计
本文介绍了基于YOLO模型的农作物害虫检测项目,包含完整的技术方案和实现细节。项目采用4000张标注图片的10类害虫数据集,实现了YOLOV5/8/10/11等多个模型,并进行了四项优化:1)使用可分离卷积实现轻量化;2)添加全维度动态卷积模块;3)引入卷积注意力融合模块提升遮挡检测能力;4)采用自适应阈值焦点损失函数处理类别不平衡。项目包含模型对比实验、GUI演示系统(PYQT5实现)及完整文档支持,兼具学术价值
2025-09-28 12:21:09
1217
原创 森林害虫检测识别--YOLO目标检测-毕设
本文介绍了基于YOLO系列模型的林业害虫检测项目,包含1873张图片的6类害虫数据集。项目实现了YOLOv5/8/10/11四种模型,并进行了四项优化:1)使用深度可分离卷积实现轻量化;2)添加全维度动态卷积提升多尺度特征提取;3)引入卷积注意力融合模块增强遮挡检测能力;4)采用自适应阈值焦点损失解决类别不平衡问题。项目包含详细视频教程(4-6小时),涵盖基础知识、环境配置、代码实现等内容,并开发了两种风格的GUI演示系统。通过多模型对比实验和创新改进,为林业害虫检测提供了智能化解决方案,兼具学术价值和实践
2025-09-27 12:43:24
1126
原创 Win11找不到组策略编辑器(gpedit.msc)解决教程
【150字摘要】 针对Win10系统找不到gpedit.msc的问题,可通过创建批处理文件解决。具体步骤:1)使用Win+R打开记事本;2)输入特定批处理代码查找并安装组策略组件包;3)将文件另存为gpedit.bat(选择"所有文件"类型);4)右键以管理员身份运行该批处理文件。执行成功后,系统会自动安装缺失的组策略编辑器组件。此方法适用于因系统精简导致组策略功能缺失的情况,无需重装系统即可恢复gpedit.msc功能。
2025-09-26 12:49:24
582
原创 烟草叶部病虫害检测识别--YOLO目标检测-毕设
本文介绍了基于YOLO系列模型的烟草叶部病虫害检测系统。项目针对烟草产业中的病虫害检测难题,提出使用YOLOV5/V8/V10/V11等模型,并进行了四项优化:1)采用深度可分离卷积实现轻量化;2)引入全维度动态卷积模块;3)添加卷积-注意力融合模块提升遮挡检测能力;4)使用自适应阈值焦点损失函数处理样本不平衡。系统包含1800张烟草病虫害图片数据集,支持四种常见病害检测,并开发了PYQT5图形界面。项目通过多模型对比实验、性能优化和实验分析,实现了从理论研究到实际应用的完整闭环,为农业智能化提供了解决方案
2025-09-26 12:44:56
1753
原创 Django项目正常运行正常加载css文件却在浏览器中无法正常渲染
解决Django无法加载CSS样式问题:通过注册表修改.css文件类型。当浏览器能加载CSS文件但样式不显示时,可能是由于.css文件类型被错误注册。解决方法是:1) 运行regedit打开注册表;2) 找到HKEY_CLASSES_ROOT-.css;3) 将ContentType从application/x-css改为text/css;4) 重启电脑并强制刷新浏览器。这个方法适用于admin和自定义HTML页面样式丢失的情况。
2025-09-25 12:05:54
240
原创 水稻病虫害检测识别--YOLO目标检测-毕设
本文介绍了基于深度学习的水稻病虫害检测项目,包含9296张图片数据集,涵盖6种常见病虫害。项目实现了YOLOV5/8/10/11四种模型,并进行了四项优化:1) 使用深度可分离卷积实现轻量化;2) 添加全维度动态卷积模块提升特征提取;3) 引入卷积注意力融合模块增强小目标检测;4) 采用自适应阈值焦点损失解决样本不平衡。项目包含完整技术路线、多模型对比实验及GUI演示系统,支持图片/视频/摄像头输入,提供两种界面风格。该研究通过算法创新提升了农业病虫害检测效率,具有学术价值和应用意义。
2025-09-25 12:01:10
2028
原创 苹果叶部病害检测--YOLO目标检测-毕设
基于深度学习的苹果叶部病害检测项目,采用YOLO系列模型(V5/V8/V10/V11)并进行四项优化改进:1)使用可分离卷积实现轻量化;2)添加全维度动态卷积模块;3)引入卷积注意力融合模块提升小目标检测;4)采用自适应阈值焦点损失处理类别不平衡。项目包含8055张7类病害图片,提供4-6小时详细教程视频(含环境配置、代码使用、论文写作等),并基于PyQT5开发了两种风格的GUI演示系统,支持图片/视频/摄像头输入检测。该项目兼具学术价值和农业应用前景,为智慧农业发展提供技术支持。
2025-09-24 18:13:37
1188
原创 中草药(饮片)检测识别--YOLO目标检测-毕设
基于深度学习的中草药检测项目,采用YOLO系列算法实现目标检测。项目涵盖40余种中草药,实现YOLOV5/V8/V10/V11四种模型及优化改进:1)使用DWConV卷积实现轻量化;2)添加ODConv全维度动态卷积模块;3)引入CAFM卷积注意力融合模块;4)采用ATFL自适应阈值损失函数。项目提供完整技术文档、并开发了两种风格的GUI演示系统,支持图片/视频/摄像头输入检测。该项目兼具学术价值和产业应用前景,为中医药现代化提供技术支持。
2025-09-23 12:02:55
1162
原创 垃圾分类检测识别-YOLO目标检测-毕设
基于YOLO系列模型(V5/V8/V10/V11)的垃圾检测项目。该项目包含17类13000张图片的数据集,针对垃圾分类需求提出了四项改进:1)采用深度可分离卷积实现模型轻量化;2)引入全维度动态卷积模块;3)设计卷积注意力融合模块提升遮挡检测能力;4)使用自适应阈值焦点损失函数处理类别不平衡。项目包含多模型对比实验、训练日志分析,并基于PyQT5开发了两种风格的GUI演示系统,支持图片/视频/摄像头输入检测,实现了从算法研究到应用落地的完整流程
2025-09-22 12:45:20
1309
原创 交通标志检测识别-YOLO目标检测-毕设
本文介绍了一个基于YOLO系列算法的交通标志检测项目,包含技术路线、数据集和模型优化方案。项目使用TT100K交通标志数据集,实现了YOLOV5/V8/V10/V11四种模型,并进行了四项关键改进:1)采用可分离卷积实现模型轻量化;2)添加全维度动态卷积模块;3)引入卷积注意力融合模块提升遮挡检测能力;4)使用自适应阈值损失函数处理类别不平衡问题。项目包含多模型对比实验、性能曲线分析,并基于PyQt5开发了两种风格的GUI演示系统,支持图片、视频和摄像头输入的实时检测,实现了从算法研究到应用落地的完整流程。
2025-09-21 14:18:24
1222
原创 交通目标检测识别-YOLO-深度学习毕设
本文介绍了基于YOLO算法的交通目标检测项目,包含YOLOv5/v8/v10/v11等模型实现及优化改进。项目采用11000张标注图片的数据集,包含车辆、行人等5类目标。主要改进包括:1)使用DWConV卷积实现模型轻量化;2)添加ODConv动态卷积模块;3)结合卷积和注意力的CAFM模块提升特征提取能力;4)采用自适应阈值焦点损失(ATFL)处理样本不平衡。项目提供完整的训练日志、对比实验和基于PyQt5的GUI演示系统,适用于图片/视频/摄像头等多种输入。
2025-09-20 15:05:05
1262
原创 行人检测-目标检测-YOLO-深度学习毕设
本文介绍了基于深度学习的行人检测项目,采用YOLO系列算法(V5/V8/V10/V11)实现多目标检测,并针对模型进行了四项优化改进:1)使用可分离卷积实现轻量化;2)添加全维度动态卷积模块提升特征提取能力;3)引入卷积注意力融合模块增强遮挡检测;4)采用自适应阈值损失函数处理类别不平衡。项目包含11000张标注图像的数据集,通过PyQT5开发了GUI演示系统,支持图片/视频/摄像头输入检测,提供两种界面风格选择。研究体现了深度学习在城市安防、智慧交通等领域的应用价值,具有完整的实验对比、创新优化和系统实现
2025-09-14 14:07:49
751
原创 车辆检测-目标检测-YOLO-深度学习毕设
本文介绍了基于深度学习的车辆检测识别项目,采用YOLO系列算法(包括YOLOV5/V8/V10/V11)实现目标检测。项目针对交通管理需求,通过改进网络结构、添加动态卷积模块和注意力机制等优化措施,提升模型在复杂场景下的检测性能。提供完整的技术路线、数据集信息(9202张图片)和多种模型对比实验,并基于PYQT5开发了两种风格的GUI演示系统。项目包含详细视频教程(4-6小时),涵盖环境配置、代码使用、论文写作等内容,适合作为计算机专业毕业设计参考。
2025-09-14 13:58:57
1000
原创 肺炎识别分类-人工智能毕设
本文介绍了基于深度学习的肺炎图像识别项目,该项目使用9种CNN和Transformer模型(如ResNet、VGG、Swin Transformer等)进行肺炎分类,并采用CBAM注意力机制优化模型性能。项目包含完整的数据集处理、模型训练、对比实验(准确率达92%以上)、混淆矩阵和ROC曲线分析,以及基于Django的演示系统。该项目能辅助医生精准诊断肺炎类型,具有临床价值和科研意义。
2025-09-13 13:15:50
983
原创 眼底疾病识别分类-眼底病变-人工智能毕设
基于深度学习的眼底疾病识别分类项目。项目采用CNN和Transformer架构的9种模型(如AlexNet、VGG、ResNet等),并创新性地加入CBAM注意力机制进行优化。通过对比实验、混淆矩阵和ROC曲线分析,模型准确率达到95%以上。项目还包含完整的Python+Django演示系统实现,涵盖训练日志、模型权重管理等功能。适合计算机毕设和人工智能学习者参考。
2025-09-13 13:10:50
880
原创 乳腺癌识别-良性恶性二分类-人工智能毕设项目
基于深度学习的乳腺癌识别分类项目。项目采用CNN和Transformer架构的9种模型(如AlexNet、VGG、ResNet等),并创新性地加入CBAM注意力机制进行优化。通过对比实验、混淆矩阵和ROC曲线分析,模型准确率达到95%以上。项目还包含完整的Python+Django演示系统实现,涵盖训练日志、模型权重管理等功能。适合计算机毕设和人工智能学习者参考。
2025-09-11 11:27:08
991
原创 脑瘤图像识别分类-人工智能毕设
基于深度学习的脑瘤识别项目,该项目采用CNN和Transformer架构共9种模型(包括ResNet、VGG、Swin Transformer等),并通过CBAM注意力机制优化模型性能。项目包含完整的技术路线、4-6小时的视频教程(涵盖基础知识、环境配置、代码使用等),以及模型训练、对比实验(准确率达95%)、混淆矩阵和ROC曲线分析。最后基于Django框架开发了演示系统,实现了从算法研究到应用落地的完整流程,为医疗影像诊断提供智能解决方案。
2025-09-11 11:21:56
1287
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅