聚类算法_特征工程-特征降维

降维

定义

降维是指在某些限定条件下,降低随机变量(特征)个数,得到⼀组“不相关”主变量的过程

降维的两种⽅式

  • 特征选择
  • 主成分分析(可以理解⼀种特征提取的⽅式)

特征选择

定义

数据中包含冗余或⽆关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。

⽅法

  • Filter(过滤式):主要探究特征本身特点、特征与特征和⽬标值之间关联
    • ⽅差选择法:低⽅差特征过滤
    • 相关系数
  • Embedded (嵌⼊式):算法⾃动选择特征(特征与⽬标值之间的关联)
    • 决策树:信息熵、信息增益
    • 正则化:L1、L2
    • 深度学习:卷积等

低⽅差特征过滤

删除低⽅差的⼀些特征,前⾯讲过⽅差的意义。再结合⽅差的⼤⼩来考虑这个⽅式的⻆度。

  • 特征⽅差⼩:某个特征⼤多样本的值⽐较相近
  • 特征⽅差⼤:某个特征很多样本的值都有差别

API

sklearn.feature_selection.VarianceThreshold(threshold = 0.0)

  • 删除所有低⽅差特征
  • Variance.fit_transform(X)
    • X:numpy array格式的数据[n_samples,n_features]
    • 返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有⾮零⽅差特征,即删除所有样本中 具有相同值的特征。

数据计算

我们对某些股票的指标特征之间进⾏⼀个筛选

# 导入模块
import pandas as pd
from sklearn.feature_selection import VarianceThreshold

def var_thr():
    """
    特征选择:低方差特征过滤
    :return:
    """
    data = pd.read_csv("./data/factor_returns.csv")
    
    # 实例化一个对象
    transfer = VarianceThreshold(threshold=10)
    # 转换
    transfer_data = transfer.fit_transform(data.iloc[:, 1:10])
    
    print('原先的数据:\n', data.iloc[:, 1:10].shape)
    print('删除低⽅差特征的结果:\n', transfer_data)
    print("形状:\n", transfer_data.shape)
    
var_thr()
原先的数据:
 (2318, 9)
删除低⽅差特征的结果:
 [[ 5.95720000e+00  8.52525509e+10  8.00800000e-01 ...  1.21144486e+12
   2.07014010e+10  1.08825400e+10]
 [ 7.02890000e+00  8.41133582e+10  1.64630000e+00 ...  3.00252062e+11
   2.93083692e+10  2.37834769e+10]
 [-2.62746100e+02  5.17045520e+08 -5.67800000e-01 ...  7.70517753e+08
   1.16798290e+07  1.20300800e+07]
 ...
 [ 3.95523000e+01  1.70243430e+10  3.34400000e+00 ...  2.42081699e+10
   1.78908166e+10  1.74929478e+10]
 [ 5.25408000e+01  3.28790988e+10  2.74440000e+00 ...  3.88380258e+10
   6.46539204e+09  6.00900728e+09]
 [ 1.42203000e+01  5.91108572e+10  2.03830000e+00 ...  2.02066110e+11
   4.50987171e+10  4.13284212e+10]]
形状:
 (2318, 7)

相关系数

⽪尔逊相关系数(Pearson Correlation Coefficient)

  • 1.作⽤

    • 反映变量之间相关关系密切程度的统计指标
  • 2.公式计算
    在这里插入图片描述

  • 3.特点

    • 相关系数的值介于 –1 与 +1 之间,即–1≤ r ≤+1。其性质如下:
      • 当r > 0时,表示两变量正相关,r < 0时,两变量为负相关
      • 当|r| = 1时,表示两变量为完全相关,当r=0时,表示两变量间⽆相关关系
      • 当0< |r| <1时,表示两变量存在⼀定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变 量的线性相关越弱
      • ⼀般可按三级划分:|r|<0.4为低度相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为⾼度线性相关
  • 4.api

    • from scipy.stats import pearsonr
      • x : (N,) array_like
      • y : (N,) array_like
      • Returns: (Pearson’s correlation coefficient, p-value)
  • 5.案例

from scipy.stats import pearsonr 

def pea_demo():
    """
    皮尔逊相关系数
    :return:
    """
    # 准备数据
    x1 = [12.5, 15.3, 23.2, 26.4, 33.5, 34.4, 39.4, 45.2, 55.4, 60.9]
    x2 = [21.2, 23.9, 32.9, 34.1, 42.5, 43.2, 49.0, 52.8, 59.4, 63.5]

    # 判断
    ret = pearsonr(x1, x2)
    print("皮尔逊相关系数的结果是:\n", ret)
    
pea_demo()
皮尔逊相关系数的结果是:
 (0.9941983762371884, 4.922089955456964e-09)

斯⽪尔曼相关系数(Rank IC)

  • 1.作⽤:

    • 反映变量之间相关关系密切程度的统计指标
  • 2.公式计算案例

    • 公式:
      在这里插入图片描述
    • n为等级个数,d为⼆列成对变量的等级差数
    • 举例:
      在这里插入图片描述
  • 3.特点

    • 斯⽪尔曼相关系数表明 X (⾃变量) 和 Y (因变量)的相关⽅向。 如果当X增加时, Y 趋向于增加, 斯⽪尔曼相关系数 则为正
    • 与之前的⽪尔逊相关系数⼤⼩性质⼀样,取值 [-1, 1]之间
  • 4.api

    • from scipy.stats import spearmanr
  • 5.案例:

from scipy.stats import spearmanr 

def spea_demo():
    """
    斯皮尔曼相关系数
    :return:
    """
    # 准备数据
    x1 = [12.5, 15.3, 23.2, 26.4, 33.5, 34.4, 39.4, 45.2, 55.4, 60.9]
    x2 = [21.2, 23.9, 32.9, 34.1, 42.5, 43.2, 49.0, 52.8, 59.4, 63.5]

    # 判断
    ret = spearmanr(x1, x2)
    print("斯皮尔曼相关系数的结果是:\n", ret)

spea_demo()
斯皮尔曼相关系数的结果是:
 SpearmanrResult(correlation=0.9999999999999999, pvalue=6.646897422032013e-64)

主成分分析

什么是主成分分析(PCA)

  • 定义:⾼维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量
  • 作⽤:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。

API

sklearn.decomposition.PCA(n_components=None)

  • 将数据分解为较低维数空间
  • n_components:
    • ⼩数:表示保留百分之多少的信息
    • 整数:减少到多少特征
  • PCA.fit_transform(X)
    • X : numpy array格式的数据[n_samples,n_features]
    • 返回值 :转换后指定维度的array
from sklearn.decomposition import PCA

def pca_demo():
    """
    pca降维
    :return:
    """
    data = [[2, 8, 4, 5], [6, 3, 0, 8], [5, 4, 9, 1]]

    # pca小数保留百分比
    transfer = PCA(n_components=0.9)
    
    # 调⽤fit_transform
    trans_data = transfer.fit_transform(data)
    
    print("保留0.9的数据最后维度为:\n", trans_data)

    
    # 实例化PCA, 整数——指定降维到的维数
    transfer = PCA(n_components=3)
    trans_data = transfer.fit_transform(data)
    print("保留三列数据:\n", trans_data)
    
pca_demo()
保留0.9的数据最后维度为:
 [[-3.13587302e-16  3.82970843e+00]
 [-5.74456265e+00 -1.91485422e+00]
 [ 5.74456265e+00 -1.91485422e+00]]
保留三列数据:
 [[-3.13587302e-16  3.82970843e+00  4.59544715e-16]
 [-5.74456265e+00 -1.91485422e+00  4.59544715e-16]
 [ 5.74456265e+00 -1.91485422e+00  4.59544715e-16]]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

¥骁勇善战¥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值