自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 Python 10 函数:求基尼指数

Q:(选做) 自己编写求Gini指数的函数,并与纸质作业比较,验证函数正确性。ps:最简单的求解函数,只是方便计算简单题目def gini_index(x,y,i): # x:feature list # y:result list # i:x里的第i列的属性 x1,y11,y12 = [],[],[] for j in range(len(x)): if x[j][i]==1: x1.append(1

2022-05-15 15:51:18 893

原创 Python 09 决策树分类边界

Q:采用 Iris 数据集的前两个属性和前100个数据集,构建决策树,并画出类似于书籍图4.11的分类边界构建决策树from matplotlib import pyplot as pltfrom sklearn.datasets import load_irisfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.tree import DecisionTreeRegressorfrom sklearn.tree imp.

2022-05-15 10:56:20 834

原创 Python 08 决策树分类

Q:对数据集,分别采用信息增益和Gini指标,利用sklearn的DecisionTreeClassifier 函数构建决策树代码:from matplotlib import pyplot as plt# 特征a1 = [1,1,1,1,1,0,0,0,1,1]a2 = [0,1,1,0,1,0,0,0,1,1]X=[]for i in range(len(a1)): x = [a1[i],a2[i]] X.append(x)# 类别Y = [1,1,1,.

2022-05-15 10:31:31 429

原创 python 3 成绩分类

3随机生成30人成绩, 然后按成绩是否 >=90, 80-89, 70-79, 60-69, 分别赋予类别 A,B,C,D,E。然后将 成绩和类别 保存到文件 score1.txtimport randomx=[]# 随机生成30人成绩,判断等级,并写入score1f = open('score1','w') # 1.打开文件for i in range(30): num=random.randint(0,100) f.write(str(num)) #2.写入

2022-04-26 14:59:36 1907

原创 python 1 找素数 2 换零钱

1 找出[0 100]内的全部素数。a = []for x in range(0,101): if x<2: continue for i in range(2,x//2+1): if x%i == 0: break else: a.append(x)print("[0,100]内的全部素数",a)运行结果:[0,100]内的全部素数 [2, 3, 5, 7, 11, 13, 17, 19

2022-04-26 14:54:52 1406

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除