自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 基于Transformer & PyTorch 的日语—中文机器翻译模型

这里我们将3使用从JParaCrawl下载的日英平行数据集,其下载网址为:http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl,这个数据集被描述为由NTT创建的“最大的公开可用的英日平行语料库”。这里当你使用自己的GPU时,NUM_ENCODER_LAYERS和NUM_DECODER_LAYERS设置为3或者更高,NHEAD设置为8,EMB_SIZE设置为512/最后,在培训结束后,我们将首先使用Pickle保存vocab对象(en_vocab和ja_vocab)。

2024-06-29 18:36:27 564 1

原创 机器翻译应用

设门控循环单元的隐藏层个数为2,隐藏单元个数为16。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。

2024-06-29 18:33:06 673

原创 自然语言处理前馈网络

自然语言处理前馈网络背景介绍感知机感知器是现存最简单的神经网络。感知器的一个历史性的缺点是它不能学习数据中存在的一些非常重要的模式。例如,查看图1中绘制的数据点。这相当于非此即彼(XOR)的情况,在这种情况下,决策边界不能是一条直线(也称为线性可分)。在这个例子中,感知器失败了.图1 XOR数据集中的两个类绘制为圆形和心性本实验研究的第二种前馈神经网络,卷积神经网络,在处理数字信号时深受窗口滤波器的启发。通过这种窗口特性,卷积神经网络能够在输入中学习局部化模式,这不仅使其成为计算机

2024-06-29 18:24:12 799

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除