序言:
苦逼大学生假期无所事事,该做些什么好呢——当然是跟着子豪哥,入门CV里的语义分割!
怎么会参与这个项目?
1.暑假没事做,又不想整天在家里躺尸,看到公众号有推一起学的项目,便报名了自己感兴趣的模块。
2.学习需要,大创正好在做影像检测与提取的内容,自己负责的部分有语义分割的任务,之前压根不知道这是什么东东,这次借着这么好的机会学习一下!
主要内容:
今天主要是概览:
看一下文档,明白这个语义分割这个方向到底是做什么的,以及对要学习的OpenMMLab开源语义分割算法库MMSegmentation做大致了解
语义分割:
语义分割(semantic segmention),也就是通常理解的图像分割,它是一个逐像素的图像分类问题,每个像素预测类别唯一,可数目标与不可数目标都要分类。当然,语义分割只是图像分割中的一个类型,除此之外,还有像实例分割、全景分割、Image Matting、弱监督与迁移学习等方向
MMSegmentation:
MMSegmentation 是目前开源项目中模型最丰富的语义分割代码库。其在统一setting 下,针对不同数据集、不同算法进行了丰富和全面的 benchmark,可以发现相同算法或 module 在不同数据集表现性能是不一致的,同时也有计划分析下这其中不同的任务、数据更为适用的模型结构和训练策略,探索数据特性、模型/module、性能之间的关系,进而研究数据和应用场景驱动的模型/module结构设计
简单规划一下接下来一周的重点任务:
1.捡起Python(主要是看Py4e
2.熟悉深度学习环境配置
3.跟着子豪哥尽量把整个项目流程走完