基于多轮视觉-语音交互的计算机辅助诊断——使用胸部图像文本数据 ProMRVL-CAD 草履虫也能看懂!!!求点赞!!!

随便过了一篇论文看下大致流程。文章主要是希望提升多轮对话和VL的能力。

论文

ProMRVL-CAD: Proactive Dialogue System with Multi-Round Vision-Language Interactions for Computer-Aided Diagnosis

https://arxiv.org/pdf/2502.10620

关键词VL计算机辅助诊断多轮对话

这篇论文主要是为了提升大模型基于视觉输入分析生成诊断报告的能力使用到了知识图谱进行主动对话设计两个生成器问题生成器用于主动引导诊断问题文本报告生成器用于生成高质量报告使用了两个公开数据集MIMIC-CXRIU-Xray

现有的任务主要是基于QA的,首先没有结合图像信息其次缺少沟通环节患者本身很难准确提供充分的疾病相关描述。

设计模型整体框架如下

首先dialogue进行输入这个输入用户输入问题问题进行处理生成有效问题候选然后ranking选择可能性最高的问题询问用户ranking过程中需要借助知识图谱进行参考定位最有可能疾病优先排序系统会拒绝已询问过的症状相关的重复查询,若已检查完最相关症状,则终止对话或转向下一个潜在疾病的询问。

step2我们医学影像文本一起输入分别处理,文本为之前所有的对话。文本使用MiniLM图像使用ViT分别提取特征然后通过一个对齐层视觉特征语言模型输入进行对齐,使得模型可以更有效地融合视觉和文本信息对于视觉特征使用一个全连接层(不确定)输出一个可能的疾病对应的置信度

损失函数设计L疾病识别任务交叉熵损失报告生成任务损失加权之和

如何判断对话需要询问几轮设置了一个信心阈值模型识别到疾病可能性达到了一定的阈值停止对话如果这个疾病一直达不到阈值问ranking中的第二个疾病

知识图谱如何构建的命名实体识别症状实体提取关系建立(不会,在下边单独补充基础)

基线:

案例首先医生一样的开场白用户开始提供信息然后根据知识图谱最可能疾病进行追问症状病人描述

知识图谱

知识图谱=实体+关系+属性一般基本存储单位三元组形式(主体, 关系, 客体)

实体:在论文比如疾病实体肺炎心脏病疾病的名称症状实体体重减轻发热身体异常状况

关系疾病某种症状关系疾病治疗方法关系疾病检查项目关系

属性疾病的严重程度轻微重度疾病的出现频率偶尔经常

大数据知识图谱——基于知识图谱+深度学习的大数据(KBQA)NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)_ai学习在心理测验,预警,治疗系统中的应用机器自动学习、图像识别、知识图谱、大数-CSDN博客

构建步骤

处理数据统一关键词+结构化一下+去除无效信息

实体抽取NER首先文本数据自动识别出命名实体用于构建节点find&classify

实体标准化同一个问题映射到同一个

关系抽取准确识别实体之间关系

构建三元组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值