- 博客(20)
- 收藏
- 关注
原创 胶囊网络、MobileNet、坐标注意力机制的应用
本周学习了一篇“基于注意力机制和预训练卷积胶囊网络的EEG情感识别”模型的论文。该论文中模型以基线校正的EEG信号为输入,首先通过坐标注意力模块加强重要特征区域的关注度,再通过预训练的MobileNet提取深度特征。MobileNet利用深度可分离卷积降低计算成本,保持模型性能;而胶囊网络凭借其敏感的位置信息保持和多维度向量输出,能够有效保留数据的结构信息并提升情感识别的准确性。
2024-11-10 12:43:15 510
原创 激活函数、条件熵和最大熵在机器学习的应用
本周学习内容探讨了神经网络中激活函数的选择及其对梯度消失问题的影响。通过使用 ReLU 函数替代 Sigmoid 函数来改善梯度消失问题的优化方法,同时分析了 Sigmoid、Softmax 激活函数在不同分类场景中的适用性。了解了条件熵和最大熵的定义,及其在概率分布建模中的重要性,结合特征函数与傅里叶变换揭示了最大熵原理如何支持概率分布估计。同时,最大熵、极大似然估计与交叉熵三者在神经网络模型中均可用于参数调整。
2024-11-02 23:44:28 1071
原创 信息量、熵以及反向传播
在机器学习和深度学习中,信息量、熵、交叉熵和KL散度等概念是理解模型性能的核心指标,尤其是在神经网络模型的训练过程中。学习了这些基本信息理论概念,并详细学习了梯度下降法及其在神经网络反向传播中的应用。通过Python实现了一个简单的二分类神经网络,展示了利用梯度下降法更新权重的反向传播过程,使模型逐步逼近最优解。最后,利用训练好的神经网络对异或(XOR)问题进行了测试,演示了模型的学习效果。本周学习了信息量和熵的基本概念。信息量越大代表事件越难以预测,而熵则是对不确定性的总体度量。
2024-10-27 15:31:56 925
原创 概率图模型中的模型推断
概率图模型通过对目标变量的边际分布或条件分布进行推断,能够有效处理高维和复杂数据。在模型推断中,参数估计可采用极大似然估计或EM方法,推断方法包括变量消去法和信念传播算法。对于复杂分布,近似推断方法(如采样法和变分推断)被广泛使用。本周通过实例展示了话题模型LDA的应用,利用LDA模型进行文本数据的主题推断,介绍了其基本构成及推断步骤。首先学习了概率图模型的推断问题,详细深入学习了变量消去法、信念传播及近似推断技术的原理和应用场景。在复杂问题中,利用采样法(如MCMC)和变分推断能够更有效地逼近分布。
2024-10-19 23:13:14 1103
原创 非线性降维方法与概率图模型
本周继续学习了降维技术,包括线性方法和非线性方法的应用。线性方法如PCA和LDA虽然广泛应用,但在面对复杂的数据分布时效果有限,因此引入了非线性的流形学习方法,如ISOMAP、LLE和LE。这些方法通过保留数据的局部和全局几何结构,实现了更有效的降维。此外,还学习了概率图模型,涵盖了贝叶斯网、马尔可夫随机场和条件随机场,展示了在推断和计算复杂概率分布时的应用。降维技术的核心在于减少数据的维度以便于可视化和分析。线性方法,如PCA和LDA,通过在高维空间中寻找最佳的投影方向来实现降维。
2024-10-13 13:50:38 768
原创 多维放缩(MDS)与主成分分析(PCA)
多维缩放(MDS)是一种保持样本间距离关系的降维技术,通过将高维空间中的距离矩阵转换为低维空间中的内积矩阵来实现。在MDS中,首先计算原始数据间的欧氏距离,然后构造出一个中心化的内积矩阵B,并对其进行特征值分解以获得降维后的坐标。主成分分析(PCA)则是另一种广泛使用的降维方法,它基于最大化投影后样本点方差的原则,通过求解协方差矩阵的特征向量找到最佳投影方向。两种方法都旨在减少数据维度同时尽可能保留原始数据的信息。
2024-10-06 16:03:55 718
原创 机器学习中的聚类
聚类是无监督学习中的重要任务,旨在将数据集划分为若干个子集(簇),使得同一簇内的样本相似度高而不同簇间的样本相似度低。本周学习了聚类的性能度量指标,包括内部和外部指标,如Jaccard系数、Rand指数、DB指数等,并介绍了几种常见的距离计算方法。此外,深入学习了几种原型聚类算法:k均值、学习向量量化(LVQ)以及高斯混合模型(GMM),并以K-means算法为例,通过鸢尾花数据集进行了实战演示。本周学习了机器学习中聚类任务的基础概念与主要方法,强调了在无监督场景下发现数据内在结构的重要性。
2024-09-29 18:58:42 1016
原创 集成学习两大流派
本周学习了集成学习中的两种重要方法:Boosting和Bagging。Boosting通过迭代训练弱学习器,并根据前一轮的表现调整样本权重,最终将弱学习器组合成强学习器。AdaBoost是Boosting的一个经典实现。Bagging则是通过对数据集进行随机采样来并行训练多个弱学习器,然后结合它们的预测结果。随机森林作为Bagging的一种改进,引入了特征随机选择机制,进一步提高了模型的泛化能力和处理高维数据的能力。通过实例展示了这些方法在分类和回归问题上的应用。
2024-09-22 17:38:26 676
原创 机器学习中集成学习
本周首先学习了M-P模型的基本原理,包括神经元激活的条件和数学形式,并探讨了阈值的确定方法。接着,文章讲解了损失函数(如均方误差和交叉熵)在机器学习中的作用及其计算方式。最后,本文深入探讨了集成学习的基本思想、分类器组合策略以及主要方法(如Boosting和Bagging),并分析了集成学习相对于个体学习在性能上的优势。本周全面学习了M-P模型的工作机制及其阈值调整方法,并详细解释了常见损失函数的作用。
2024-09-15 16:30:37 937
原创 模型泛化、残差模块算子融合、遗传算法
本周学习了模型泛化、自动微分、PyTorch中模型保存与加载、Dropout的实现及其变体R-Dropout,以及遗传算法的基础知识。通过具体示例介绍了自动微分的前向和反向传播过程、PyTorch中模型保存的不同方式、Dropout在神经网络中的应用及其实现,还展示了如何在PyTorch中实现卷积残差模块的算子融合,并给出了MATLAB中遗传算法的基本操作及函数解释。
2024-09-08 01:52:49 586
原创 决策树模型
决策树是一种监督学习方法,通过从根节点到叶子节点的方式对数据进行分类或回归。构造决策树的关键在于选择合适的特征进行节点划分,这通常通过计算信息增益或其他衡量标准来实现。决策树易于理解和实现,但容易过拟合,因此需要采取剪枝策略来提高泛化能力。从根节点开始一步步走到叶子节点(决策)所有的数据最终都会落到叶子节点,既可以做分类也可以做回归。本周由于开学前期,时间没有很充裕,本周只学习了决策树模型,下周会继续努力学习!
2024-09-01 20:53:27 987
原创 特征工程以及transformer基础框架学习
本周学习了特征预处理技术,例如规范化和标准化,这些技术对于为机器学习模型准备数据至关重要。还深入研究了 Transformer 架构,解释了嵌入、注意力机制等组件,以及使用残差连接和层归一化来提高模型性能。在本周中,学习了特征预处理方法,包括归一化和标准化,用于为机器学习算法准备数据。然后,详细介绍了 Transformer 架构,重点学习了它通过词和位置嵌入的输入处理。注意力机制被解释为一个核心组件,它允许模型对输入序列的不同部分进行加权。
2024-08-25 00:53:53 1040
原创 卷积神经网络补充及特征工程应用
本周详细学习了卷积神经网络(CNN)的基本组件及其功能,包括卷积层、激活层、池化层、全连接层和正则化层。同时,探讨了特征工程中的关键概念和技术,如特征提取方法,并通过实例展示了如何使用scikit-learn进行数据集划分和特征提取。最后,通过一个新闻分类案例应用了朴素贝叶斯算法,并总结了其优缺点。加载获取流行数据集获取小规模数据集,数据包含在datasets里。
2024-08-18 15:33:54 1093
原创 机器学习中检验与可视化
本周学习了检查和可视化机器学习模型的方法,重点关注部分依赖图 (PDP)、个体条件期望 (ICE) 图和排列特征重要性。PDP 和 ICE 有助于可视化输入特征与模型预测之间的关系,而排列特征重要性通过打破每个特征与目标变量的关联来评估每个特征对模型性能的影响。让Xs 为感兴趣的输入特征的集合(即特征参数),令Xc做它的补充。
2024-08-11 01:29:06 657
原创 机器学习--模型选择与评估
本周探讨了机器学习中的模型选择与评估技术,重点介绍了交叉验证方法,用于评估模型的泛化能力。通过k折交叉验证和随机排列交叉验证等技术,可以有效地评估模型在未见数据上的性能。同时,还介绍了如何通过网格搜索和随机搜索来调整模型的超参数,以找到最优配置。最后,文中还提到了如何调整分类器的决策阈值以及使用不同的评分指标来量化预测质量。对于最常见的用例,使用scoring参数指定一个计分器对象。所有得分对象都遵循这样的约定,即返回值越高越好。因此度量模型和数据之间距离的度量,比如度量。
2024-07-29 20:20:07 976
原创 机器学习---无监督学习
本周探讨了无监督学习中的几种关键方法,包括高斯混合模型(GMM)、聚类算法(如K-Means和Mean Shift)以及受限玻尔兹曼机(RBM)。高斯混合模型利用概率模型来拟合数据,并通过可视化展示了其对二维数据集的预测轮廓。聚类部分涵盖了多种算法的性能和局限性,如K-Means和Mean Shift,并提供了具体示例。最后,还介绍了受限玻尔兹曼机的工作原理及其在特征学习中的应用。
2024-07-26 12:46:20 802
原创 机器学习中贝叶斯基础原理应用
贝叶斯定理是统计学中关于条件概率的重要理论,包括全概率公式描述事件发生的总概率,以及贝叶斯公式阐述了在已知某些证据条件下某一假设的概率。在机器学习领域,贝叶斯原理被广泛应用,其中朴素贝叶斯及其变体如多项式、Complement Naive Bayes、高斯和伯努利模型,成为文本分类、情感分析、人脸识别、数据挖掘推荐及异常检测等任务的有效工具。这些应用依赖于贝叶斯定理来预测和分类,尤其在处理大量数据时展现出高效与简洁性。
2024-07-21 16:04:56 580
原创 机器学习中的分类算法——监督学习
本文综述了监督学习中多种分类算法的核心概念与应用示例,强调了从线性模型到非线性核方法、支持向量机(SVM)及神经网络模型的演变。线性模型如普通最小二乘法和岭回归,通过优化误差和正则化策略处理简单至中等复杂度的数据分类。岭回归通过引入惩罚项提高模型在多重共线性数据上的稳定性。线性和二次判别分析(LDA/QDA)提供了解决分类问题的经典框架,尤其适合具有特定统计属性的数据分布。核岭回归和SVM引入核技巧处理非线性分类,其中SVM以其最大化间隔的特性在高维空间中表现优异,尽管在大规模数据上可能面临计算挑战。
2024-07-14 13:30:06 890 2
原创 机器学习核心任务
机器学习是通过让计算机从数据中自动学习并进行预测或分析的技术。其核心任务主要包括回归与分类。回归致力于预测连续值输出,如线性回归通过拟合最佳直线预测目标变量;逻辑回归虽名含“回归”,实则应用于分类,利用Sigmoid函数转换预测连续概率。分类任务则是将数据分配至预设类别,如决策树通过特征分割数据,采用剪枝策略防过拟合;支持向量机(SVM)通过找到最大化类别间隔的边界进行分类,可选多种核函数适应不同数据特性。
2024-07-07 15:30:07 1227
原创 PyTorch神经网络(DNN-CNN)基础与实战
本篇文字是为了深入了解深度神经网络(DNN)和卷积神经网络(CNN)的基础知识和实战技巧,并使用PyTorch框架进行实际操作和模型实现。
2024-06-30 17:48:03 752
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人