提示:常见套路
文章目录
让我们做一个重要的观察
n
n
n的任何值为
gcd
(
n
−
1
,
n
)
=
1
\gcd(n - 1, n) = 1
gcd(n−1,n)=1。此外,选择
i
=
n
−
1
i = n - 1
i=n−1和
i
=
n
i = n
i=n是最便宜的操作。由此我们可以得出结论:答案是
≤
3
\leq 3
≤3。设
g
g
g是数组中所有数的
gcd
\gcd
gcd。那么我们有以下几种情况:
- 如果是g=1,那么可以省略操作,答案是0、否则,我们试试最便宜的操作 i=n。如果gcd(g,n)=1,那么答案是1
- 否则,让我们尝试下一个最便宜的操作,即 i=n−1.如果是gcd(g,n−1)=1,那么答案就是2
- 否则,答案是 3,因为 gcd(g,n−1,n)=1。
让我们来证明,如果一个数字有三位数,那么你总是可以从中去掉至少一位数,得到一个非质数。这可以通过对所有有三位数的数字进行简单的暴力搜索来证明,但我们将尝试不通过暴力搜索来证明。
事实上,如果一个数字包含数字 “1”、“4”、“6”、"8 "或 “9”,那么这个数字就是答案,因为1、4、6、8和9都不是质数。
现在我们来看看如果这个数没有这些数字会怎样。那么,如果这个数有两个相同的数位,我们就找到了大小为 2 的答案–两个相同数位(22、33、55或77)的数能被11整除。另外,如果数字2或5不在数的开头,我们又找到了大小为 2 的答案–以2或5结尾的两位数不是质数。
如果上述情况都不成立,那么我们就会发现一个三位数具有下列值之一:237, 273, 537, 573.不难看出,这些数都有两位数,它们组成一个能被三整除的数。
因此,答案的最大值是 2,也就是说,你不能在数字中留下超过两位数。你可以根据上述情况找出这些数字,也可以直接试一试。
可以证明这样的暴力解法对 O(k)有效。渐近:每个测试案例O(k)