- 博客(45)
- 收藏
- 关注
原创 【day 20 】深入理解shap图
1. 详细拆解 shap 绘图函数(特别是 force_plot)对数据维度的要求。2. 使用经典的 加州房价 (California Housing) 数据集进行完整的回归模型 SHAP 分析。
2025-12-10 15:33:55
526
原创 【day 19】评价类问题
不直接预测房价,而是利用数据中的特征,使用熵权法确定权重,再用 TOPSIS 对加州各个街区的“居住综合质量”进行打分排名,最后看看这个“综合得分”与“实际房价”是否有关系。
2025-12-09 22:25:42
192
原创 【day 11】常见的调参方式
对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化。以下是完成数据预处理和模型建立的部分。lightgbt调参。
2025-11-13 18:13:53
293
原创 【day 10】机器学习建模与评估
3.机器学习的流程顺序-----不要数据泄露(归一化器在划分数据集后)1.异常值的处理---箱线图去除异常值的思想和迭代问题。作业:尝试对心脏病数据集采用机器学习模型建模和评估。4.机器学习模型建模的三行代码。5.机器学习模型分类问题的评估。6.如何理解分类报告。最后这个显示有点奇怪。
2025-11-12 15:45:25
323
原创 【day 9】 热力图和子图的绘制
尝试用子图拼接的形式来构建心脏病数据集的图的排版,完成下面5张图。2.特征与标签关系的在一起(连续变量一起;离散变量一起)2张图。1.单特征的拼接在一起(连续变量一起;离散变量一起)2张图。3.热力图调试到满意的样式。
2025-11-09 18:06:01
127
原创 【day 8】标签编码与连续变量处理
作业:对心脏病数据集的特征用上述知识完成,一次性用所有的处理方式完成预处理,包括。4.数据可视化(单特征、单特征与标签)3.连续特征的归一化or标准化。
2025-11-09 12:36:28
222
原创 【day 6】数据可视化
作业:去针对其他特征绘制单特征图和特征和标签的关系图,并且试图观察出一些有意思的结论。1.单特征可视化:连续变量箱线图(还说了核密度直方图)、离散特征直方图。3.箱线图美化--->直方图。内容回顾:数据初步可视化。2.特征和标签关系可视化。
2025-11-06 14:44:01
113
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅