哈喽,大家好!目前有有一个小项目功能落到自己手中,也是一个面试必考点。如何保证MySQL与Es、Redis等之间的数据一致性,带着大家的问题,我给提供一种解决方案(最终一致性)
代码如下:
@Component
@Slf4j
@EnableAsync
@AllArgsConstructor
public class EsSynchronizeTasksJob {
private final ISysUserAllESService sysUserAllESService;
private final SysUserAllESDocMapper userAllESDocMapper;
private final SysPositRequestDocMapper sysPositRequestDocMapper;
private final ISysPositRequestService sysPositRequestService;
// @Scheduled(fixedRate = 10000)
// @Scheduled(cron = "0 0 3 * * ?")
@Async("pushMysqlToEsExecutor")
@Transactional(rollbackFor = Exception.class)
public void syncDataToEsBySysUserAllES() throws Exception {
log.info("<----异步执行数据同步开始---->");
// 获取系统时间
Long startTime = System.currentTimeMillis();
process(sysPositRequestService, sysPositRequestDocMapper);
process(sysUserAllESService, userAllESDocMapper);
Long endTime = System.currentTimeMillis();
log.info("<----异步执行数据同步结束---->");
log.info("<----异步执行数据同步耗时---->" + (endTime - startTime) + "ms");
}
private <D extends BaseEntity, S extends IService<D>, M extends BaseEsMapper<D>> void process(IService service, BaseEsMapper mapper) throws Exception {
Class<D> docClass = mapper.getEntityClass();
String indexName = docClass.getAnnotation(Document.class).indexName();
if (!mapper.existsIndex(indexName)) {
boolean success = mapper.createIndex(indexName);
if (success) {
System.out.println("索引创建成功!indexName===>" + indexName);
}
} else {
List<D> sysUserAllESDocs = mapper.selectList(new LambdaEsQueryWrapper<>());
System.out.println("es中有" + sysUserAllESDocs.size());
// TODO 现在是全量同步,后面待定时任务开启后就是每天新增的数据
Integer delete = mapper.delete(new LambdaEsQueryWrapper<>());
System.out.println("删除ES之前的数据" + delete);
}
// TODO 现在是全量同步,后面待定时任务开启后就是每天新增的数据
List<D> list = service.lambdaQuery().getBaseMapper().selectList(new LambdaQueryWrapper<>());
List<D> document = new ArrayList<>();
for (D o : list) {
D docInstance = docClass.getDeclaredConstructor().newInstance();
BeanUtils.copyProperties(o, docInstance);
Method setIdMethod = docClass.getMethod("setMysqlId", Long.class);
Long idValue = (Long) o.getClass().getMethod("getId").invoke(o);
setIdMethod.invoke(docInstance, idValue);
document.add(docInstance);
}
int successCount = mapper.insertBatch(document);
System.out.println("在MySQL表中有:" + list.size() + "条数据");
System.out.println("向ES中成功添加:" + successCount + "条数据");
if (list.size() == successCount) {
System.out.println("同步成功");
} else {
int i = list.size() - successCount;
System.out.println("同步失败,有" + i + "条数据未写入ES,请联系管理员!");
}
}
}
自定义线程池类:
package com.ruoyi.web.es.conifg;
import com.google.common.util.concurrent.ThreadFactoryBuilder;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
/**
* 七大参数:
* 1 corePoolSize:线程池核心线程数量,核心线程不会被回收,即使没有任务执行,也会保持空闲状态。如果线程池中的线程少于此数目,则在执行任务时创建。
* 2 maximumPoolSize:池允许最大的线程数,当线程数量达到corePoolSize,且workQueue队列塞满任务了之后,继续创建线程。
* 3 keepAliveTime:超过corePoolSize之后的“临时线程”的存活时间。
* 4 unit:keepAliveTime的单位。
* 5 workQueue:当前线程数超过corePoolSize时,新的任务会处在等待状态,并存在workQueue中,BlockingQueue是一个先进先出的阻塞式队列实现,底层实现会涉及Java并发的AQS机制,有关于AQS的相关知识,我会单独写一篇,敬请期待。
* 6 threadFactory:创建线程的工厂类,通常我们会自顶一个threadFactory设置线程的名称,这样我们就可以知道线程是由哪个工厂类创建的,可以快速定位。
* 7 handler:线程池执行拒绝策略,当线数量达到maximumPoolSize大小,并且workQueue也已经塞满了任务的情况下,线程池会调用handler拒绝策略来处理请求。
* 四大拒绝策略:
* 1 AbortPolicy:为线程池默认的拒绝策略,该策略直接抛异常处理。
* 2 DiscardPolicy:直接抛弃不处理。
* 3 DiscardOldestPolicy:抛弃队列头部(最旧)的一个任务,并执行当前任务
* 4 CallerRunsPolicy:使用当前调用的线程来执行此任务
*
* @author gao
*/
@Configuration
public class ThreadPoolTaskExecutorConfig {
// 核心线程数
private static final int corePoolSize = 4;
// 最大线程数
private static final int maxPoolSize = 4;
// 允许线程空闲时间(单位:默认为秒)
private static final int keepAliveTime = 10;
// 缓冲队列数
private static final int queueCapacity = 15;
// 线程池名前缀
private static final String threadNamePrefix = "Thread-PushMessage-Service-";
@Bean("pushMysqlToEsExecutor")
public ThreadPoolTaskExecutor pushMessageExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(corePoolSize);
executor.setMaxPoolSize(maxPoolSize);
executor.setQueueCapacity(queueCapacity);
executor.setKeepAliveSeconds(keepAliveTime);
executor.setThreadNamePrefix(threadNamePrefix);
// setWaitForTasksToCompleteOnShutdown(true): 该方法用来设置 线程池关闭 的时候 等待 所有任务都完成后,再继续 销毁 其他的 Bean,这样这些 异步任务 的 销毁 就会先于 数据库连接池对象 的销毁。
executor.setWaitForTasksToCompleteOnShutdown(true);
// setAwaitTerminationSeconds(60): 该方法用来设置线程池中 任务的等待时间,如果超过这个时间还没有销毁就 强制销毁,以确保应用最后能够被关闭,而不是阻塞住。
executor.setAwaitTerminationSeconds(60);
// 线程池对拒绝任务的处理策略
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.AbortPolicy());
// 初始化
executor.initialize();
return executor;
}
@Bean(name = "pushMysqlToEsScheduler")
public ThreadPoolTaskScheduler taskScheduler() {
ThreadPoolTaskScheduler scheduler = new ThreadPoolTaskScheduler();
ThreadPoolExecutor customThreadPool = new ThreadPoolExecutor(
corePoolSize, maxPoolSize, keepAliveTime, TimeUnit.SECONDS,
new LinkedBlockingQueue<>(queueCapacity),
new ThreadFactoryBuilder().setNameFormat(threadNamePrefix + "-%d").build()
);
scheduler.setPoolSize(customThreadPool.getMaximumPoolSize());
scheduler.setThreadNamePrefix(threadNamePrefix);
return scheduler;
}
}
大家知道有几种保证数据一致性的解决方案呢?
①通过读写锁来实现
②通过中间件canal伪装成MySQL的从节点来实现(参考地址:超详细的Canal入门,看这篇就够了!-CSDN博客)
③通过MQ异步消息推送实现,MySQL数据发生变化时向MQ发送消息
④通过定时任务获取MySQL中更新的数据
..........
最后:①②是强一致性的解决方案,③④是最终一致性的解决方案。项目实战是一个漫长的过程,山高路远,道阻且长!加油💪🏻!