01 NumPy基础=================NumPy基础及取值操作 educoder头歌实践作业
NumPy基础及取值操作 educoder头歌实践作业_本关任务:根据本关所学知识,补全右侧代码编辑器中缺失的代码,完成程序的编写-CSDN博客
1 | ndarray对象 | 2024-02-26 13:50 | 3 | 3 | 2024-02-26 14:07 | -- | 否 | 100/100 | 16.00/16 | 16.00 |
2 | 形状操作 | 2024-02-26 13:50 | 4 | 1 | 2024-02-26 14:07 | -- | 否 | 100/100 | 16.00/16 | 16.00 |
3 | 基础操作 | 2024-02-26 13:50 | 3 | 1 | 2024-02-26 14:13 | -- | 否 | 100/100 | 16.00/16 | 16.00 |
4 | 随机数生成 | 2024-02-26 13:50 | 3 | 1 | 2024-02-26 14:13 | -- | 否 | 300/300 | 16.00/16 | 16.00 |
5 | 索引与切片 | 2024-02-26 13:50 | 4 | 1 | 2024-02-26 14:13 | -- | 否 | 200/200 | 16.00/16 | 16.00 |
02 NumPy高级操作
头歌实践教学平台
1 | 堆叠操作 | |||||||||
2 | 比较、掩码和布尔逻辑 | |||||||||
3 | 花式索引与布尔索引 | |||||||||
4 | 广播机制 | |||||||||
5 | 线性代数 |
03 Pandas基础
- 了解数据处理对象--Series
- 了解数据处理对象-DataFrame
- 读取 CSV 格式数据
- 数据的基本操作——排序
- 数据的基本操作——删除
- 数据的基本操作——算术运算
- 数据的基本操作——去重
- 数据重塑
04 Pandas进阶
- Pandas 分组聚合
- Pandas 创建透视表和交叉表
05 机器学习 --- 线性回归
1 | 简单线性回归与多元线性回归 | |||||||||
2 | 线性回归的正规方程解 | |||||||||
3 | 衡量线性回归的性能指标 | |||||||||
4 | scikit-learn线性回归实践 - 波斯顿房价预测 |
06 机器学习 --- 逻辑回归
1 | 逻辑回归核心思想 | 2024-03-25 13:50 | 13 | 2 | 2024-03-25 14:08 | -- | 否 | 200/200 | 16.00/16 | 16.00 |
2 | 逻辑回归的损失函数 | 2024-03-25 13:50 | - - | 1 | 2024-03-25 14:10 | -- | 否 | 80/80 | 16.00/16 | 16.00 |
3 | 梯度下降 | 2024-03-25 13:50 | 13 | 2 | 2024-03-25 14:11 | -- | 否 | 400/400 | 16.00/16 | 16.00 |
4 | 动手实现逻辑回归 - 癌细胞精准识别 | 2024-03-25 13:50 | 7 | 1 | 2024-03-25 14:11 | -- | 否 | 600/600 | 16.00/16 | 16.00 |
5 | 手写数字识别 |
07 机器学习 --- 朴素贝叶斯
1 | 条件概率 | 2024-03-30 08:20 | - - | 1 | 2024-03-30 09:05 | -- | 否 | 40/40 | 16.00/16 | 16.00 |
2 | 贝叶斯公式 | 2024-03-30 08:20 | - - | 3 | 2024-03-30 09:04 | -- | 否 | 40/40 | 16.00/16 | 16.00 |
3 | 朴素贝叶斯分类算法流程 | 2024-03-30 08:20 | 40 | 2 | 2024-03-30 08:59 | -- | 否 | 600/600 | 16.00/16 | 16.00 |
4 | 拉普拉斯平滑 | 2024-03-30 08:20 | 30 | 2 | 2024-03-30 09:00 | -- | 否 | 300/300 | 16.00/16 | 16.00 |
5 | 新闻文本主题分类 |
08 机器学习 --- 支持向量回归(SVR)
1 | 线性可分支持向量机 | 2024-03-30 08:20 | - - | 2 | 2024-03-30 09:01 | -- | 否 | 60/60 | 16.00/16 | 16.00 |
2 | 线性支持向量机 | 2024-03-30 08:20 | 4 | 1 | 2024-03-30 09:02 | -- | 否 | 500/500 | 16.00/16 | 16.00 |
3 | 非线性支持向量机 | 2024-03-30 08:20 | 3 | 1 | 2024-03-30 09:03 | -- | 否 | 500/500 | 16.00/16 | 16.00 |
4 | 序列最小优化算法 | 2024-03-30 08:20 | 75 | 1 | 2024-03-30 09:03 | -- | 否 | 1000/1000 | 16.00/16 | 16.00 |
5 | 支持向量回归 |
09 机器学习 --- K近邻
1 | kNN算法原理 | 2024-04-01 13:50 | - - | 7 | 2024-04-01 14:12 | -- | 否 | 20/20 | 13.30/13.3 | 13.30 |
2 | 使用sklearn中的kNN算法进行分类 | 2024-04-01 13:50 | 5 | 1 | 2024-04-01 14:13 | -- | 否 | 100/100 | 13.30/13.3 | 13.30 |
3 | 使用sklearn中的kNN算法进行回归 | 2024-04-01 13:50 | 5 | 1 | 2024-04-01 14:15 | -- | 否 | 100/100 | 13.30/13.3 | 13.30 |
4 | 分析红酒数据 | 2024-04-01 13:50 | 2 | 1 | 2024-04-01 14:18 | -- | 否 | 100/100 | 13.30/13.3 | 13.30 |
5 | 对数据进行标准化 | 2024-04-01 13:50 | 4 | 1 | 2024-04-01 14:18 | -- | 否 | 300/300 | 13.30/13.3 | 13.30 |
6 | 使用kNN算法进行预测 |
10 机器学习 --- k-means算法
1 | 距离度量 | 2024-04-08 13:50 | 15 | 1 | 2024-04-08 14:28 | -- | 否 | 100/100 | 20.00/20 | 20.00 |
2 | 什么是质心 | 2024-04-08 13:50 | 9 | 1 | 2024-04-08 14:29 | -- | 否 | 100/100 | 20.00/20 | 20.00 |
3 | k-means算法流程 | 2024-04-08 13:50 | 61 | 1 | 2024-04-08 14:29 | -- | 否 | 700/700 | 20.00/20 | 20.00 |
4 | sklearn中的k-means |
11 机器学习 --- DBSCAN算法
1 | DBSCAN算法的基本概念 | 2024-04-08 13:50 | - - | 3 | 2024-04-08 14:31 | -- | 否 | 10/10 | 26.70/26.7 | 26.70 |
2 | DBSCAN算法流程 | 2024-04-08 13:50 | 53 | 1 | 2024-04-08 14:31 | -- | 否 | 700/700 | 26.70/26.7 | 26.70 |
3 | sklearn中的DBSCAN |