Redis
使用场景
其他面试题
使用场景
缓存穿透
缓存穿透: 查询一个不存在的数据, MySQL查询不到数据也不会直接写入缓存, 就会导致每次请求都查数据库
解决方案一: 缓存空数据, 查询返回的数据为空, 仍然把这个空结果进行缓存
{key:1,value:null}
优点: 简单
缺点: 消耗内存, 可能发生不一致的问题
解决方案二:布隆过滤器
优点: 内存占用较少, 没有多余key
缺点: 实现复杂, 存在误判
布隆过滤器
bitmap(位图): 相当于是一个以(bit)位为单位的数组, 数组中每个单元只能存储二进制数0或1
布隆过滤器作用: 布隆过滤器可以用于检索一个元素是否在一个集合中
误判率: 数组越小误判率越大, 数组越大误判率就越小, 但是同时带来了更多的内存消耗
缓存击穿
缓存击穿: 给某一个key设置了过期时间, 当key过期的时候, 恰好这时间点对这个key有大量的并发请求过来, 这些并发的请求可能会瞬间把DB压垮
解决方案一: 互斥锁
强一致、性能差
解决方案二: 逻辑过期
高可用、性能优、但是不能保证数据绝对一致
缓存雪崩
缓存雪崩: 是指在同一时段内大量的缓存key同时失效或者Redis服务宕机, 导致大量请求到达数据库, 带来巨大压力
解决方案:
-
大量key过期: 给不同的Key的TTL添加随机值(随机的过期时间)
-
Redis服务宕机: 利用Redis集群提高服务的可用性. 哨兵模式、集群模式
-
给缓存业务添加降级限流策略. Nginx或者Spring Cloud Gateway、降级可作为系统的保底策略, 适用于穿透、击穿、雪崩
-
给业务添加多级缓存. Guava或Caffeine
缓存三兄弟
穿透无中生有key, 布隆过滤null隔离
缓存击穿过期key, 锁与非期解难题
雪崩大量过期key, 过期时间要随机
面试必考三兄弟, 可用限流来保底
双写一致性
一致性要求高? 允许延迟一致?
双写一致
双写一致性: 当修改了数据库的数据也要同时更新缓存的数据, 缓存和数据库的数据要保持一致
-
读操作: 缓存命中, 直接返回; 缓存为命中查询数据库, 写入缓存, 设定超时时间
-
写操作: 延迟双删
-
先删除缓存, 还是先修改数据库?
-
为什么要删除两次缓存?
降低出现脏数据的可能性
-
为什么要延时删除?
-
强一致
优化: 一般存入缓存的数据都是读多写少的数据
共享锁: 读锁readLock
, 加锁之后, 其他线程可以共享读操作
排他锁: 也叫独占锁writeLock
, 加锁之后, 阻塞其他县城读写操作
实现:
读锁:
独占锁:
延迟一致
异步通知保证数据的最终一致性
基于Canal(阿里的一款中间件)的异步通知
面试回答
Redis作为缓存, MySQL的数据如何与Redis进行同步呢? (双写一致性)
- 介绍自己简历上的业务, 我们当时是把文章的热点数据存入到了缓存中, 虽然是热点数据, 但是实时性要求并没有那么高, 所以, 我们当时采用的是异步的同步数据的方案
- 我们当时是把抢券的库存存入到了缓存中, 这个需要实时的记性你数据同步, 为了保证数据的强一致, 我们当时采用的是
redisson
提供的读写锁来保证数据的同步
那你来介绍一下异步的方案(redisson
读写锁的这种方案)
- 允许延时一致的业务, 采用异步通知
- 使用MQ消息中间件, 更新数据之后, 通知缓存删除
- 利用Canal中间件, 不需要修改业务代码, 伪装为MySQL的一个从节点, Canal通过读取
binlog
的数据更新缓存
- 强一致性的, 采用
Redisson
提供的读写锁- 共享锁: 读锁
readLock
, 加锁之后, 其他线程可以共享读操作 - 排他锁: 也叫独占锁
writeLock
, 加锁之后, 阻塞其他县城读写操作
- 共享锁: 读锁
持久化
Redis作为缓存, 数据的持久化是怎么做的?
在Redis中提供了两种数据持久化的方式: 1. RDB
2. AOF
RDB
RDB全称Redis Database Backup file
(Redis数据备份文件), 也被叫做Redis数据快照. 简单来说就是把内存中的所有数据都记录到磁盘中. 当Redis实例故障重启后, 从磁盘读取快照文件, 恢复数据
Redis内部有触发RDB
的机制, 可以在redis.conf
文件中找到,格式如下
# 900秒内,如果至少有1个key被修改,则执行bgsave
save 900 1
save 300 10
save 60 10000
RDB的执行原理
bgsave
开始时会fork
主进程得到子进程, 子进程共享主进程的内存数据. 完成fork
后读取内存数据并写入RDB文件
fork
采用的是copy-on-write
技术:
- 当主进程执行读操作时, 访问共享内存
- 当主进程执行写操作时, 则会拷贝一份数据, 执行写操作
AOF
AOF全称为Append Only File
(追加文件). Redis处理的每一个写命令都会记录在AOF文件, 可以看作是命令日志文件.
AOF默认是关闭的, 需要修改redis.conf
配置文件来开启AOF:
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf
文件来配
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
配置项 | 刷盘时机 | 优点 | 缺点 |
---|---|---|---|
Always | 同步刷盘 | 可靠性高,几乎不丢数据 | 性能影响大 |
everysec | 每秒刷盘 | 性能适中 | 最多丢失1秒数据 |
no | 操作系统控制 | 性能最好 | 可靠性较差,可能丢失大量数据 |
因为是记录命令, AOF文件会比RDB文件大得多. 而且AOF会记录对同一个key的多次写操作, 但只有最后一次写操作才有意义. 通过执行bgrewriteaof
命令, 可以让AOF文件执行重写功能, 用最少的命令达到相同效果
Redis也会在触发阈值时自动去重写AOF文件. 阈值也可以在redis.conf
中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
RDB和AOF对比
RDB和AOF各有自己的优缺点, 如果对数据安全性要求较高, 在实际开发中往往会结合两者来使用
RDB | AOF | |
---|---|---|
持久化方式 | 定时对整个内存做快照 | 记录每一次执行的命令 |
数据完整性 | 不完整,两次备份之间会丢失 | 相对完整,取决于刷盘策略 |
文件大小 | 会有压缩,文件体积小 | 记录命令,文件体积很大 |
宕机恢复速度 | 很快 | 慢 |
数据恢复优先级 | 低,因为数据完整性不如AOF | 高,因为数据完整性更高 |
系统资源占用 | 高,大量CPU和内存消耗 | 低,主要是磁盘IO资源 但AOF重写时会占用大量CPU和内存资源 |
使用场景 | 可以容忍数分钟的数据丢失,追求更快的启动速度 | 对数据安全性要求较高常见 |
数据过期策略
假如Redis的key过期之后, 会立即删除吗?
Redis对数据设置数据的有效时间, 数据过期以后, 就需要将数据从内存中删除掉. 可以按照不同的规则进行删除, 这种规则就被称之为数据的删除策略(数据过期策略).
惰性删除、定期删除
惰性删除
惰性删除: 设置该key过期时间后, 我们不去管它, 当需要该key时, 我们再检查其是否过期, 如果过期, 我们就删掉它, 反之返回该key
优点: 对CPU友好, 只会在使用该key时才会进行过期检查, 对于很多用不到的key不用浪费时间进行过期检查
缺点: 对内存不友好, 如果一个key已经过期, 但是一直没有使用, 那么该key就会一直存在内存中, 内存永远不会释放
定期删除
定期删除: 每隔一段时间, 我们就对一些key进行检查, 删除里面过期的key(从一定数量的数据库中取出一定数量的随机key进行检查, 并删除其中的过期key).
定期清理有两种模式:
- SLOW模式时定时任务, 执行频率默认为10hz, 每次不超过25ms, 以通过修改配置文件
redis.conf
的hz
选项来调整这个次数 - FAST模式执行频率不固定, 但两次间隔不低于2ms, 每次耗时不超过1ms
优点: 可以通过限制删除操作执行的时长和频率来减少删除操作对CPU的影响. 另外定期删除, 也能有效释放过期key占用的内存
缺点: 难以确定删除操作执行的时长和频率
**Redis的过期删除策略 **
惰性删除 + 定期删除两种策略进行配合使用
数据淘汰策略
假如缓存过多, 内存是有限的, 内存被占满了怎么办?
其实就是想问Redis的数据淘汰策略是什么?
数据淘汰策略
数据淘汰策略: 当Redis中的内存不够用时, 此时再想Redis中添加新的key, 那么Redis就会按照某一种规则将内存中的数据删除掉, 这种数据的删除规则被称之为内存的淘汰策略
Redis支持8种不同策略来选择要删除的key:
noeviction
: 不淘汰任何key, 但是内存满时不允许写入新数据, 默认就是这种策略volatile-ttl
: 对设置了TTL的key, 比较key的剩余TTL值, TTL越小越先被淘汰allkeys-random
: 对全体key, 随机进行淘汰volatile-random
: 对设置了TTL的key, 随机进行淘汰.allkeys-lru
: 对全体key, 基于LRU算法进行淘汰volatile-lru
: 对设置了TTL的key, 基于LRU算法进行淘汰allkeys-lfu
: 对全体key, 基于LFU算法进行淘汰volatile-lfu
: 对设置了TTL的key, 基于LFU算法进行淘汰
使用建议
- 优先使用
allkeys-lru
策略. 充分利用LRU算法的优势, 把最近最常访问的数据留在缓存中. 如果业务有明显的冷热数据区分, 建议使用. - 如果业务中数据访问频率差别不大, 没有明显冷热数据区分, 建议使用
allkeys-random
, 随机选择淘汰. - 如果业务中有置顶的需求, 可以使用
volatile-lru
策略, 同时置顶数据不设置过期时间, 这些数据就一直不被删除, 会淘汰其他设置了过期时间的数据 - 如果业务中有短时高频访问的数据, 可以使用
allkeys-lfu
或volatile-lfu
策略
关于数据淘汰策略其他的面试问题
-
数据库有1000万数据, Redis只能缓存20W数据, 如何保证Redis中的数据都是热点数据?
答: 使用
allkeys-lru
(挑选最近最少使用的数据淘汰)淘汰策略, 留下来的都是经常访问的热点数据 -
Redis的内存用完了会发生什么?
答: 主要看数据淘汰策略是什么? 如果是默认的配置(
noeviction
), 会直接报错
分布式锁
Redis分布式锁, 是如何实现的?
需要结合项目中的业务进行回答, 通常情况下, 分布式锁使用的场景:
集群情况下的定时任务、抢单、幂等性场景
抢券场景
正常情况:
异常情况:
解决方案一:
集群模式下的异常情况:
互斥锁是本地的, 对于集群来说, 没有效果, 此时就需要一个外部的锁, 也就是分布式锁
Redis分布式锁
Redis实现分布式锁主要利用Redis的setnx
命令. setnx
是SET if not exists
(如果不存在, 则SET
)的简写
-
获取锁:
-
释放锁:
Redis实现分布式锁如何合理的控制锁的有效时长?
- 根据业务执行时间预估
- 给锁续期
Redisson实现的分布式锁-执行流程
Redisson新增了看门狗机制和重试机制
看门狗: 监听线程, 并每隔(releaseTime / 3)的时间给锁进行续期
重试机制: 如果一个线程获取锁失败, 并不是立即结束线程, 而是通过while
循环不断的尝试获取锁, 一般情况下, 业务执行时长很短, 所以可以显著提高分布式锁的执行性能. 重试机制不会一直重试下去, 会有一个阈值, 当超过阈值时会自动结束
如果设置了锁的过期时间, 将不会触发看门狗机制, 也就不会给锁续期.
加锁、设置过期时间等操作都是基于lua
脚本完成
lua
脚本作用: 能够调用Redis命令, 保证多条命令执行的原子性
Redisson实现的分布式锁-可重入
利用hash结构记录线程id和重入次数
Redisson实现的分布式锁-主从一致性
RedLock(红锁): 不能只在一个Redis实例上创建锁, 应该是在多个Redis实例上创建锁(n / 2 + 1), 避免在一个Redis实例上加锁
Redis是AP思想: 即原子性与分区容忍性, 结果最终一致即可
zookeeper是CP思想: 即一致性与分区容忍性, 是保持强一致的
面试官: Redis分布式锁, 是如何实现的?
- 先按照自己简历上的业务进行描述分布式锁使用的场景
- 我们当时使用的Redisson实现的分布式锁, 底层时
setnx
和lua脚本
(保证原子性)
面试官: Redisson实现分布式锁如何合理的控制锁的有效时长?
答: 在Redisson的分布式锁中, 提供了一个WatchDog
(看门狗), 一个线程获取锁成功以后, WatchDog
会给持有锁的线程续期(默认是(release(默认30s) / 3) 10s续期一次)
面试官: Redisson的这个锁, 可以重入吗?
答: 可以重入, 多个锁重入需要判断是否是当前线程, 在Redis中进行存储的时候使用的是hash结构, 来存储线程信息和重入的次数
面试官: Redisson锁能解决主从一致的问题吗
答: 不能解决, 但是可以使用Redisson提供的红锁来解决, 但是这样的话, 性能就太低了, 如果业务中非要保证数据的强一致性, 建议采用zookeeper实现的分布式锁
其他面试问题
Redis集群有哪些方案?
在Redis中提供的集群方案总共有三种
- 主从复制
- 哨兵模式
- 分片集群
主从复制
单节点Redis的并发能力是有上限的, 要进一步提高Redis的并发能力, 就需要搭建主从集群, 实现读写分离
主从数据同步原理
主从全量同步:
Replication Id
: 简称replid
, 是数据集的标记, id一致则说明是同一数据集. 每一个master
都有唯一的replid
, slave
则会继承master
节点的replid
offset
: 偏移量, 随着记录在repl_baklog
中的数据增多而逐渐增大. slave
完成同步时也会记录当前同步的offset
. 如果slave
的offset
小雨master
的offset
, 说明slave
的数据落后于master
, 需要更新.
主从增量同步(slave
重启或后期数据变化)
面试官: 介绍一下Redis的主从同步
答: 单节点Redis的并发能力是有上限的, 要进一步提高Redis的并发能力, 就需要搭建主从集群, 实现读写分离. 一般都是一主多从, 主节点负责写数据, 从节点负责读数据
面试官: 能说一下, 主从同步数据的流程吗?
全量同步:
- 从节点请求主节点同步数据(携带
Replication Id
、offset
) - 主节点判断是否是第一次请求, 是第一次就与从节点同步版本信息(携带
Replication Id
和offset
) - 主节点执行
bgsave
, 生成RDB
文件后, 发送给从节点去执行 - 在
RDB
生成执行期间, 主节点会以命令的方式记录到缓冲区(一个日志文件) - 把生成之后的命令日志文件发送给从节点进行同步
增量同步:
- 从节点请求主节点同步数据, 主节点判断是不是第一次请求, 不是第一次就获取从节点的
offset
值 - 主节点从命令日志中获取
offset
值之后的数据, 发送给从节点进行数据同步
哨兵
哨兵的作用
Redis提供了哨兵(Sentinel) 机制来实现主从集群的自动故障恢复. 哨兵的结构和作用如下
- 监控: Sentinel会不断检查您的
master
和slave
是否按照预期工作 - 自动故障恢复: 如果
master
故障, Sentinel会将一个slave
提升为master
. 当故障实例恢复后也以新的master为主 - 通知: Sentinel充当Redis客户端的服务发现来源, 当集群发生故障转移时, 会将最新信息推送给Redis的客户端
服务状态监控
Sentinel基于心跳机制监测服务状态, 每隔1秒向集群的每个实例发送ping
命令:
- 主观下线: 如果某Sentinel节点发现某实例未在规定时间相应, 则认为该实例主观下线.
- 客观下线: 若超过指定数量(
quorum
)的Sentinel都任务该实例主观下线, 则该实例客观下线.quorum
值最好超过Sentinel实例数量的一半
哨兵选主规则
- 首先判断主与从节点断开时间长短, 如超过指定值就排除该从节点
- 然后判断从节点的
slave-priority
值, 越小优先级越高 - 如果
slave-prority
一样, 则判断slave
节点的offset
值, 越大优先级越高 - 最后是判断
slave
节点的运行id大小, 越小优先级越高.
Redis集群(哨兵模式)脑裂
正常情况:
如果此时发生了网络等一系列原因故障, 导致主从节点不在同一个网络分区下, 如下图:
此时Sentinel会根据选主规则, 重新选择一个主节点. 问题来了, 此时客户端连接的依旧是之前的主节点, 还会继续往老主节点中写入数据, 而不会往新主节点中写入. 当网络恢复后, 老主节点会被强制降为子节点, 如图:
此时, 老主节点变为子节点后会向新主节点发送同步数据请求, 并且清空自己的数据. 那么, 在故障期间, 在老主节点中写入的数据将会全部丢失. 这就是脑裂问题
解决:
Redis中有两个配置参数:
min-replicas-to-write 1
: 表示最少的salve
节点为个
min-replicas-max-lag 5
: 表示数据复制和同步的延迟不能超过5秒
面试官: 怎么保证Redis的高并发高可用?
答: 哨兵模式: 实现主从集群的自动故障恢复(监控、自动故障恢复、通知)
面试官: 你们使用Redis是单点还是集群, 哪种集群?
答: 主从(1主1从) + 哨兵模式就可以了. 单节点不超过10G内存, 如果Redis内存不足则可以给不同服务非配独立的Redis主从节点
面试官: Redis集群脑裂, 该怎么解决呢?
答: 集群脑裂是由于主节点和从节点和Sentinel处于不同的网络分区, 使得Sentinel没有能够心跳感知到主节点, 所以通过选举的方式提升了一个从节点为主, 这样就存在了两个master
, 就像大脑分裂了一样, 这样会导致客户端还在老的主节点那里写入数据, 新节点无法同步数据, 当网络恢复后, Sentinel会将老的主节点降为从节点, 这是再从新master
同步数据, 就会导致数据丢失
解决: 我们可以修改Redis的配置, 可以设置最少的从节点数量以及缩短主从数据同步的延迟时间, 达不到要求就拒绝请求, 就可以避免大量的数据丢失
分片集群
主从和哨兵可以解决高可用(哨兵)、高并发读(主从)的问题, 但是依然有两个问题没有解决:
- 海量数据存储问题
- 高并发写的问题
结构
使用分片集群可以解决上述问题, 分片集群特征:
-
集群中有多个
master
, 每个master
保存不同数据 -
每个
master
都可以有多个slave
节点 -
master
之间通过ping
监测彼此健康状态 -
客户端请求可以访问集群任意节点, 最终都会被转发到正确节点
数据读写
Redis分片集群引入了哈希槽的概念, Redis集群有16384个哈希槽, 每隔key
通过CRC16
校验后对16384取模来决定放置哪个槽, 集群的每个节点负责一部分hash槽
面试官: Redis的分片集群有什么作用?
- 集群中有多个
master
, 每个master
保存不同数据 - 每个
master
都可以有多个slave
节点 master
之间通过ping
检测彼此健康状态- 客户端请求可以访问集群任意节点, 最终都会被转发到正确节点
面试官: Redis分片集群中数据是怎么存储和读取的?
- Redis分片集群引入了哈希槽的概念, Redis集群有16384个哈希槽
- 将16384个插槽分配到不同的实例
- 读写数据: 根据
key
的有效部分计算哈希值, 对16384取余(有效部分, 如果key前面有大括号, 大括号的内容就是有效部分, 如果没有, 则以key
本身作为有效部分)余数作为插槽, 寻找插槽所在的实例
Redis是单线程的, 但是为什么还那么快?
- Redis是纯内存操作, 执行速度非常快
- 采用单线程, 避免不必要的上下文切换可竞争条件, 多线程还要考虑线程安全问题
- 使用I/O多路复用模型, 非阻塞IO
I/O多路复用模型
Redis是纯内存操作, 执行速度非常快, 它的性能瓶颈是网络延迟而不是执行速度, I/O多路复用模型主要就是实现了高效的网络请求
- 用户空间和内核空间
- 常见的IO模型
- 阻塞IO(Blocking IO)
- 非阻塞IO(Nonblocking IO)
- IO多路复用(IO Multiplexing)
- Redis网络模型
用户空间和内核空间
- Linux系统中一个进程使用的内存情况划分为两部分: 内核空间、用户空间
- 用户空间只能执行受限的命令(Ring3), 而且不能直接调用系统资源, 必须通过内核提供的接口来访问
- 内核空间可以执行特权命令(Ring0), 调用一切系统资源
Linux系统为了提高IO效率, 会在用户空间和内核空间都加入缓冲区:
- 写数据时: 要把用户缓冲数据拷贝到内核缓冲区, 然后写入设备
- 读数据时: 要从设备读取数据到内核缓冲区, 然后拷贝到用户缓冲区
阻塞IO
顾名思义, 阻塞IO就是两个阶段都必须阻塞等待:
阶段一:
- 用户进程尝试读取数据(比如网卡数据)
- 此时数据尚未到达, 内核需要等待数据
- 此时用户进程也处于阻塞状态
阶段二:
- 数据到达并拷贝到内核缓冲区, 代表已就绪
- 将内核数据拷贝到用户缓冲区
- 拷贝过程中, 用户进程依然阻塞等待
- 拷贝完成, 用户进程解除阻塞, 处理数据
可以看到, 阻塞IO模型中, 用户进程在两个阶段都是阻塞状态
非阻塞IO
顾名思义, 非阻塞IO的recvfrom
操作会立即返回结果而不是阻塞用户进程
阶段一:
- 用户进程尝试读取数据(比如网卡数据)
- 此时数据尚未到达, 内核需要等待数据
- 返回异常给用户进程
- 用户进程拿到
ERROR
后, 再次尝试读取 - 循环往复, 知道数据就绪
阶段二:
- 将内核数据拷贝到用户缓冲区
- 拷贝过程中, 用户进程依然阻塞等待
- 拷贝完成, 用户进程解除阻塞, 处理数据
可以看到, 非阻塞IO模型中, 用户进程在第一个阶段是非阻塞, 第二个阶段是阻塞状态. 虽然是非阻塞, 但性能并没有得到提高. 而且忙等机制会导致CPU空转, CPU使用率暴增.
IO多路复用
IO多路复用: 是利用单个线程来同时监听多个Socket
, 并在某个Socket
可读、可写时得到通知, 从而避免无效的等待, 充分利用CPU资源.
阶段一:
- 用户进程调用
select
, 指定要监听的Socket
集合 - 内核监听对应的多个
Socket
- 任意一个或多个
Socket
数据就绪则返回readable
- 此过程中用户进程阻塞
阶段二:
- 用户进程找到就绪的
Socket
- 依次调用
recvfrom
读取数据 - 内核将数据拷贝到用户空间
- 用户进程处理数据
不过监听Socket
的方式、通知的方式又有多种实现, 常见的有:
select
poll
epoll
差异:
select
和poll
只会通知用户进程有Socket
就绪, 但不确定具体是哪个Socket
, 需要用户进程逐个遍历Socket
来确认epoll
则会在通知用户进程Socket
就绪的同时, 把已就绪的Socket
写入用户空间
Redis网络模型
Redis通过IO多路复用来提高网络性能, 并且支持各种不同的多路复用实现, 并且将这些实现进行封装, 提供了统一的高性能事件库
在Redis6.0版本之后加入了多线程模式
面试官: 能解释一下I/O多路复用模型吗?
答:
-
I/O多路复用
是指利用单个线程来同时监听多个
Socket
, 并在某个Socket
可读、可写时得到通知, 从而避免无效的等待, 充分利用CPU资源. 目前的I/O多路复用都是采用的epoll
模式实现, 它会在通知用户进程Socket
就绪的同时, 把已就绪的Socket
写入用户空间, 不需要挨个遍历Socket
来判断是否就绪, 提升了性能. -
Redis网络模型
就是使用I/O多路复用结合事件的处理器来应对多个
Socket
请求- 连接应答处理器
- 命令回复处理器, 在Redis6.0之后, 为了提升性能, 使用了多线程来处理回复事件
- 命令请求处理器, 在Redis6.0之后, 将命令的转换使用了多线程, 增加命令转换速度, 在命令执行的时候, 依然是单线程
Redis相关面试题
面试官:什么是缓存穿透 ? 怎么解决 ?
候选人:
嗯~~,我想一下
缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。这种情况大概率是遭到了攻击。
解决方案的话,我们通常都会用布隆过滤器来解决它
面试官:好的,你能介绍一下布隆过滤器吗?
候选人:
嗯,是这样~
布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是redisson实现的布隆过滤器。
它的底层主要是先去初始化一个比较大数组,里面存放的二进制0或1。在一开始都是0,当一个key来了之后经过3次hash计算,模于数组长度找到数据的下标然后把数组中原来的0改为1,这样的话,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。
当然是有缺点的,布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%,其实这个误判是必然存在的,要不就得增加数组的长度,其实已经算是很划分了,5%以内的误判率一般的项目也能接受,不至于高并发下压倒数据库。
面试官:什么是缓存击穿 ? 怎么解决 ?
候选人:
嗯!!
缓存击穿的意思是对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。
解决方案有两种方式:
第一可以使用互斥锁:当缓存失效时,不立即去load db,先使用如 Redis 的 setnx 去设置一个互斥锁,当操作成功返回时再进行 load db的操作并回设缓存,否则重试get缓存的方法
第二种方案可以设置当前key逻辑过期,大概是思路如下:
①:在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间
②:当查询的时候,从redis取出数据后判断时间是否过期
③:如果过期则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据不是最新
当然两种方案各有利弊:
如果选择数据的强一致性,建议使用分布式锁的方案,性能上可能没那么高,锁需要等,也有可能产生死锁的问题
如果选择key的逻辑删除,则优先考虑的高可用性,性能比较高,但是数据同步这块做不到强一致。
面试官:什么是缓存雪崩 ? 怎么解决 ?
候选人:
嗯!!
缓存雪崩意思是设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多key,击穿是某一个key缓存。
解决方案主要是可以将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
面试官:redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)
候选人:嗯!就说我最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,需要让数据库与redis高度保持一致,因为要求时效性比较高,我们当时采用的读写锁保证的强一致性。
我们采用的是redisson实现的读写锁,在读的时候添加共享锁,可以保证读读不互斥,读写互斥。当我们更新数据的时候,添加排他锁,它是读写,读读都互斥,这样就能保证在写数据的同时是不会让其他线程读数据的,避免了脏数据。这里面需要注意的是读方法和写方法上需要使用同一把锁才行。
面试官:那这个排他锁是如何保证读写、读读互斥的呢?
候选人:其实排他锁底层使用也是setnx,保证了同时只能有一个线程操作锁住的方法
面试官:你听说过延时双删吗?为什么不用它呢?
候选人:延迟双删,如果是写操作,我们先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据,其中这个延时多久不太好确定,在延时的过程中可能会出现脏数据,并不能保证强一致性,所以没有采用它。
面试官:redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)
候选人:嗯!就说我最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,数据同步可以有一定的延时(符合大部分业务)
我们当时采用的阿里的canal组件实现数据同步:不需要更改业务代码,部署一个canal服务。canal服务把自己伪装成mysql的一个从节点,当mysql数据更新以后,canal会读取binlog数据,然后在通过canal的客户端获取到数据,更新缓存即可。
面试官:redis做为缓存,数据的持久化是怎么做的?
候选人:在Redis中提供了两种数据持久化的方式:1、RDB 2、AOF
面试官:这两种持久化方式有什么区别呢?
候选人:RDB是一个快照文件,它是把redis内存存储的数据写到磁盘上,当redis实例宕机恢复数据的时候,方便从RDB的快照文件中恢复数据。
AOF的含义是追加文件,当redis操作写命令的时候,都会存储这个文件中,当redis实例宕机恢复数据的时候,会从这个文件中再次执行一遍命令来恢复数据
面试官:这两种方式,哪种恢复的比较快呢?
候选人:RDB因为是二进制文件,在保存的时候体积也是比较小的,它恢复的比较快,但是它有可能会丢数据,我们通常在项目中也会使用AOF来恢复数据,虽然AOF恢复的速度慢一些,但是它丢数据的风险要小很多,在AOF文件中可以设置刷盘策略,我们当时设置的就是每秒批量写入一次命令
面试官:Redis的数据过期策略有哪些 ?
候选人:
嗯~,在redis中提供了两种数据过期删除策略
第一种是惰性删除,在设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key。
第二种是 定期删除,就是说每隔一段时间,我们就对一些key进行检查,删除里面过期的key
定期清理的两种模式:
- SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的 hz 选项来调整这个次数
- FAST模式执行频率不固定,每次事件循环会尝试执行,但两次间隔不低于2ms,每次耗时不超过1ms
Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用。
面试官:Redis的数据淘汰策略有哪些 ?
候选人:
嗯,这个在redis中提供了很多种,默认是noeviction,不删除任何数据,内部不足直接报错
是可以在redis的配置文件中进行设置的,里面有两个非常重要的概念,一个是LRU,另外一个是LFU
LRU的意思就是最少最近使用,用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
LFU的意思是最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高
我们在项目设置的allkeys-lru,挑选最近最少使用的数据淘汰,把一些经常访问的key留在redis中
面试官:数据库有1000万数据 ,Redis只能缓存20w数据, 如何保证Redis中的数据都是热点数据 ?
候选人:
嗯,我想一下~~
可以使用 allkeys-lru (挑选最近最少使用的数据淘汰)淘汰策略,那留下来的都是经常访问的热点数据
面试官:Redis的内存用完了会发生什么?
候选人:
嗯~,这个要看redis的数据淘汰策略是什么,如果是默认的配置,redis内存用完以后则直接报错。我们当时设置的 allkeys-lru 策略。把最近最常访问的数据留在缓存中。
面试官:Redis分布式锁如何实现 ?
候选人:嗯,在redis中提供了一个命令setnx(SET if not exists)
由于redis的单线程的,用了命令之后,只能有一个客户端对某一个key设置值,在没有过期或删除key的时候是其他客户端是不能设置这个key的
面试官:好的,那你如何控制Redis实现分布式锁有效时长呢?
候选人:嗯,的确,redis的setnx指令不好控制这个问题,我们当时采用的redis的一个框架redisson实现的。
在redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了
还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自旋不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。
面试官:好的,redisson实现的分布式锁是可重入的吗?
候选人:嗯,是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数
面试官:redisson实现的分布式锁能解决主从一致性的问题吗
候选人:这个是不能的,比如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时当前持有Redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。
我们可以利用redisson提供的红锁来解决这个问题,它的主要作用是,不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁,并且要求在大多数redis节点上都成功创建锁,红锁中要求是redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题了。
但是,如果使用了红锁,因为需要同时在多个节点上都添加锁,性能就变的很低了,并且运维维护成本也非常高,所以,我们一般在项目中也不会直接使用红锁,并且官方也暂时废弃了这个红锁
面试官:好的,如果业务非要保证数据的强一致性,这个该怎么解决呢?
**候选人:**嗯~,redis本身就是支持高可用的,做到强一致性,就非常影响性能,所以,如果有强一致性要求高的业务,建议使用zookeeper实现的分布式锁,它是可以保证强一致性的。
面试官:Redis集群有哪些方案, 知道嘛 ?
候选人:嗯~~,在Redis中提供的集群方案总共有三种:主从复制、哨兵模式、Redis分片集群
面试官:那你来介绍一下主从同步
候选人:嗯,是这样的,单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,可以搭建主从集群,实现读写分离。一般都是一主多从,主节点负责写数据,从节点负责读数据,主节点写入数据之后,需要把数据同步到从节点中
面试官:能说一下,主从同步数据的流程
候选人:嗯~~,好!主从同步分为了两个阶段,一个是全量同步,一个是增量同步
全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:
第一:从节点请求主节点同步数据,其中从节点会携带自己的replication id和offset偏移量。
第二:主节点判断是否是第一次请求,主要判断的依据就是,主节点与从节点是否是同一个replication id,如果不是,就说明是第一次同步,那主节点就会把自己的replication id和offset发送给从节点,让从节点与主节点的信息保持一致。
第三:在同时主节点会执行bgsave,生成rdb文件后,发送给从节点去执行,从节点先把自己的数据清空,然后执行主节点发送过来的rdb文件,这样就保持了一致
当然,如果在rdb生成执行期间,依然有请求到了主节点,而主节点会以命令的方式记录到缓冲区,缓冲区是一个日志文件,最后把这个日志文件发送给从节点,这样就能保证主节点与从节点完全一致了,后期再同步数据的时候,都是依赖于这个日志文件,这个就是全量同步
增量同步指的是,当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步
面试官:怎么保证Redis的高并发高可用
候选人:首先可以搭建主从集群,再加上使用redis中的哨兵模式,哨兵模式可以实现主从集群的自动故障恢复,里面就包含了对主从服务的监控、自动故障恢复、通知;如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证redis的高并发高可用
面试官:你们使用redis是单点还是集群,哪种集群
候选人:嗯!,我们当时使用的是主从(1主1从)加哨兵。一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用lua脚本和事务
面试官:redis集群脑裂,该怎么解决呢?
候选人:嗯! 这个在项目很少见,不过脑裂的问题是这样的,我们现在用的是redis的哨兵模式集群的
有的时候由于网络等原因可能会出现脑裂的情况,就是说,由于redis master节点和redis salve节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到master,所以通过选举的方式提升了一个salve为master,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在old master那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将old master降为salve,这时再从新master同步数据,这会导致old master中的大量数据丢失。
关于解决的话,我记得在redis的配置中可以设置:第一可以设置最少的salve节点个数,比如设置至少要有一个从节点才能同步数据,第二个可以设置主从数据复制和同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失
面试官:redis的分片集群有什么作用
候选人:分片集群主要解决的是,海量数据存储的问题,集群中有多个master,每个master保存不同数据,并且还可以给每个master设置多个slave节点,就可以继续增大集群的高并发能力。同时每个master之间通过ping监测彼此健康状态,就类似于哨兵模式了。当客户端请求可以访问集群任意节点,最终都会被转发到正确节点
面试官:Redis分片集群中数据是怎么存储和读取的?
候选人:
嗯~,在redis集群中是这样的
Redis 集群引入了哈希槽的概念,有 16384 个哈希槽,集群中每个主节点绑定了一定范围的哈希槽范围, key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,通过槽找到对应的节点进行存储。
取值的逻辑是一样的
面试官:Redis是单线程的,但是为什么还那么快?
候选人:
嗯,这个有几个原因吧~~~
1、完全基于内存的,C语言编写
2、采用单线程,避免不必要的上下文切换可竞争条件
3、使用多路I/O复用模型,非阻塞IO
例如:bgsave 和 bgrewriteaof 都是在后台执行操作,不影响主线程的正常使用,不会产生阻塞
面试官:能解释一下I/O多路复用模型?
候选人:嗯~~,I/O多路复用是指利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的I/O多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。
其中Redis的网络模型就是使用I/O多路复用结合事件的处理器来应对多个Socket请求,比如,提供了连接应答处理器、命令回复处理器,命令请求处理器;
在Redis6.0之后,为了提升更好的性能,在命令回复处理器使用了多线程来处理回复事件,在命令请求处理器中,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程
如果有错误还请大佬们指出!