自然语言处理NLP 02统计语言模型

目录

jieba中文分词

TF-IDF

TF(词频,Term Frequency)

IDF(逆文档频率,Inverse Document Frequency)

总结

案例:从文本数据中提取并分析关键词的重要性


jieba中文分词

jieba 是一个强大的中文分词工具,支持自定义词汇和多种分词模式。通过 jieba.add_word()jieba.load_userdict() 可以灵活地处理新词汇。

举例:对"饺子导演的作品哪吒2要冲到全球动画票房榜首啦"这句话进行分词

import jieba
​
# 输入文本
str = '饺子导演的作品哪吒2要冲到全球动画票房榜首啦'
​
# 添加自定义词汇
jieba.add_word('全球动画票房')
jieba.add_word('哪吒2')
​
# 对文本进行分词
a = jieba.lcut(sentence=str)
​
# 输出分词结果
print(a)

运行结果 :

未导入分词库的效果

import jieba
str='饺子导演的作品哪吒2要冲到全球动画票房榜首啦'
a=jieba.lcut(sentence=str)
print(a)

运行结果: 

TF-IDF

TF-IDF 是自然语言处理(NLP)和信息检索中常用的统计方法,用于衡量一个词在文档中的重要性,广泛应用于文本分析和信息检索任务中。以下是它们的详细介绍:


TF(词频,Term Frequency)

  • 定义:词频是指一个词在文档中出现的频率。

  • 计算公式

  • 作用:衡量一个词

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值