自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(80)
  • 收藏
  • 关注

原创 Could not resolve all dependencies for configuration ‘:classpath‘

Could not resolve all dependencies for configuration ':classpath'

2024-01-03 15:09:19 4030

原创 You may use special comments to disable some warnings.Use // eslint-disable-next-line to ignore th

这些错误和警告来自于你的 JavaScript 和 Vue.js 代码,它们被 ESLint 检测到。ESLint 是一个开源的 JavaScript 代码检查工具,可以在代码编写过程中发现潜在的错误和不符合代码规范的写法。

2023-12-26 09:38:33 1745

原创 concat_ws()和college_list()配合=>实现多行转一行

concat_ws()和college_list()配合=>实现多行转一行。

2023-12-21 15:49:10 1316

原创 SparkSQL 函数 crossjoin()

crossJoin是 Spark SQL 中用于连接两个 DataFrame 的操作。这个操作会生成一个新的 DataFrame,其中包含两个原始 DataFrame 中所有可能的行组合,即它是一种笛卡尔积。

2023-12-19 15:29:38 1031

原创 PHP-个人博客-期末项目学习交流 【最后附有运行代码展示效果】

PHP-个人博客-期末项目学习交流 【最后附有运行代码展示效果】

2023-12-15 11:13:27 545

原创 spark 写入hive报错[笔记]:Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Tas

Spark将数据写入hive时报错:Exception in thread "main" org.apache.spark.SparkException: Job aborted.Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 (TID

2023-12-15 10:50:15 1035

原创 Spark 写入 hive报错 [笔记]: The format of the existing table ods_7.user_info is `HiveFileFormat`.

Exception in thread "main" org.apache.spark.sql.AnalysisException: The format of the existing table ods_7.user_info is `HiveFileFormat`. It doesn't match the specified format `ParquetDataSourceV2`.

2023-12-15 09:56:41 408

原创 Spark SQL中coalesce()函数

在Spark SQL中,`coalesce()`函数用于从给定列中选择非空值。它接受一个或多个列作为参数,并返回第一个非空值。在数据清洗和预处理过程中,`coalesce()`函数非常有用,特别是在处理缺失值或空值时。

2023-12-12 17:16:13 1483

原创 Spark SQL 的partitionBy() 动态分区

在Spark SQL中,`partitionBy()` 动态分区是指根据数据的实际值进行分区,而不是在数据写入时就确定分区的值。动态分区``scala在上述示例中,首先使用 `spark.read` 方法读取 CSV 文件,并将其加载为 DataFrame。然后,使用 `df.write` 方法将 DataFrame 保存为 Parquet 格式的文件。在保存的过程中,使用 `partitionBy` 方法指定了两个列名,即 "column1" 和 "column2",这样就会根据这两个列的值进行动态分区。

2023-12-12 17:10:25 1139

原创 Spark SQL 时间格式处理

理解是先用unix_timestamp将指点格式转换为时间戳,再用from_unixtime将时间戳转换为你想要的时间格式!所以这两个一般是配合使用的。函数通常用于将Unix时间戳转换为日期和时间格式。它接受一个Unix时间戳作为输入,并返回一个表示特定日期和时间的字符串。函数通常用于将日期和时间转换为Unix时间戳。它接受一个日期和时间作为输入,并返回一个表示该日期和时间的Unix时间戳。: 取得当期时间日期。

2023-11-24 20:47:59 2303 2

原创 null, message from server: “Host ‘192.168.170.1‘ is not allowed to connect to this MySQL server“

远程连接MySQL报错:java.sql.SQLException: null, message from server: "Host '192.168.170.1' is not allowed to connect to this MySQL server"

2023-11-15 11:38:32 762

原创 hiv启动报:ConnectException: Call From xxxx/192.168.170.111 to xueai:8020 failed on connection exception

Exception in thread "main" java.lang.RuntimeException: java.net.ConnectException: Call From xueai/192.168.170.111 to xueai:8020 failed on connection exception: java.net.ConnectException: 拒绝连接;看下自己的hadoop集群是否启动【jps】,看是否有没有哪个进程没有启动起来,没有启动起来就查看对应的日志文件。

2023-11-15 10:55:27 376

原创 Linux 关闭对应端口号进程

找出端口号端口号进程。

2023-11-14 14:48:55 472

原创 Sqoop的安装和使用

-hive-import 的配置项要在 --hive-database 之前。将满足条件的数据抽取到hdfs或hive,需要用到配置参数为。注意: where一般位于--table。查看hive中是否导入成功。--where '表达式'3.改名和配置归属权限。

2023-11-01 15:48:13 595

原创 hive启动报错:Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient

java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClientCaused by: MetaException(message:Could not connect to meta store using any of the URIs provided. Most recent failure: org.apache.thrift.transpor

2023-11-01 10:01:09 1298

原创 机器学习(python)笔记整理

归一化与规范化类似,也是将特征的值域缩小到[0,1]之间,但与规范化不同的是,归一化是对整个数据集的缩放,而规范化是对单个特征的缩放。标准化是将特征值转换为标准正态分布,使得特征值的均值为0,标准差为1,以消除特征值之间的量纲影响,并提高模型的精度。在这里,我们以xgboost模型为例进行训练。规范化的目的是将特征的值域缩小到[0,1]之间,以消除各特征值域不同的影响,并提高模型的精度。在数据中存在重复值的情况下,可以采用删除重复值、保留重复值、统计重复值等方式进行重复值处理。1.one-hot编码。

2023-10-26 09:46:27 795

原创 spark报错:apache.spark.memory.TaskMemoryManager - Failed to allocate a page (6710 bytes), try again.

17510 [Executor task launch worker for task 2.0 in stage 1.0 (TID 3)] WARN org.apache.spark.memory.TaskMemoryManager - Failed to allocate a page (67108864 bytes), try again.17195 [Executor task launch worker for task 4.0 in stage 1.0 (TID 5)] WARN org.

2023-10-20 14:44:52 403

原创 Sqoop技术文档笔记

1.解压缩2.改名3.添加环境变量输入内容:刷新配置文件:source /etc/profile4.添加权限root:root=>所属组名:所属组群名5.修改配置文档6.配置mysql的Driver驱动器放在sqoop的lib中7.测试是否配置成功。

2023-10-19 15:24:18 128

原创 Hadoop启动报错 master: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).

Starting namenodes on [master]master: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).Starting datanodesStarting secondary namenodes [master]master: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).

2023-10-18 11:15:43 3850 3

原创 hive初始化报错:.HiveMetaException: Schema initialization FAILED! Metastore state would be inconsistent !!

org.apache.hadoop.hive.metastore.HiveMetaException: Schema initialization FAILED! Metastore state would be inconsistent !!Underlying cause: java.io.IOException : Schema script failed, errorcode 2org.apache.hadoop.hive.metastore.HiveMetaException: Schema

2023-10-17 20:12:37 1203

原创 Sqoop:Exception in thread “main“ java.lang.NoClassDefFoundError: org/apache/commons/lang/StringUtils

Sqoop:Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/commons/lang/StringUtils

2023-10-17 16:08:59 367

原创 ssh 报错:Permission denied, please try again.

ssh 报错:Permission denied, please try again.

2023-10-17 10:10:09 718

原创 Window 窗口函数 (Spark Sql)

在 Spark SQL 中,Window 函数是一种用于在查询结果集中执行聚合、排序和分析操作的强大工具。它允许你在查询中创建一个窗口,然后对窗口内的数据进行聚合计算。

2023-10-17 08:49:17 1016

原创 ssh 连接:Permission denied (publickey,gssapi-keyex,gssapi-with-mic).

Permission denied (publickey,gssapi-keyex,gssapi-with-mic).

2023-10-16 21:17:07 1979

原创 echarts关于一次性绘制多个饼图 (基于vue3)

在echarts中,`dataset` 和 `source` 是用来配置数据的选项。是一个包含数据相关配置的对象,用于指定数据的来源和格式。它可以包含多个维度的数据集,每个维度都可以有自己的名称和数据。是 `dataset` 中的一个子项,用于指定数据的具体内容。在这个例子中,`source` 的值是一个二维数组,表示具体的数据。每一行代表一个数据条目,每一列代表一个维度。数据格式为dataset: {source: [

2023-10-15 17:21:31 3026

原创 clickhouse报错:<Error> not match the owner of the data (clickhouse). Run under ‘sudo -u clickhouse‘.

clickhouse报错信息: Application: DB::Exception: Effective user of the process (root) does not match the owner of the data (clickhouse). Run under 'sudo -u clickhouse'.

2023-10-13 11:33:32 601

原创 sparksql 中的concat_ws 和sort_array 和collect_list的使用方法

`concat_ws`用于将多个字符串连接成一个以指定分隔符分隔的单个字符串。- 语法:`concat_ws(separator, str1, str2, ...)`- 示例:```sql```结果将是一个字符串:"apple,banana,cherry"

2023-10-08 20:05:30 2825

原创 javaScript 中的localeCompare方法及其使用

localeCompare方法是JavaScript中比较字符串时常用的方法之一,其主要功能是根据指定的语言环境比较两个字符串的大小关系,可以用于排序、查找、去重等操作。

2023-10-05 13:20:52 3392

原创 Sqark Sql 的percentile_approx计算中位数

percentile_approx` 聚合函数,用于计算指定列的近似分位数。具体来说,`percentile_approx` 函数的参数包括三个部分:- 第一个参数是要计算分位数的列,这里使用 `$"order_money"` 表示使用名为 "order_money" 的列进行计算。- 第二个参数是要计算的分位数的百分比,这里使用 `lit(0.5)` 表示计算中位数(50% 的分位数)。

2023-09-28 11:22:20 1741

原创 spark 集成 ClickHouse 和 MySQL (读和写操作)(笔记)

【代码】spark 集成 ClickHouse 和 MySQL (读和写操作)(笔记)

2023-09-28 08:49:19 1915

原创 Spark集成ClickHouse(笔记)

在大数据处理和分析领域,Spark 是一个非常强大且广泛使用的开源分布式计算框架。而 ClickHouse 则是一个高性能、可扩展的列式数据库,特别适合用于实时分析和查询大规模数据。将 Spark 与 ClickHouse 集成可以充分发挥它们各自的优势,使得数据处理和分析更加高效和灵活。

2023-09-26 19:05:11 2125

原创 spark集成clickhouse报错: .ClassNotFound Failed to find data source: clickhouse. Please find packages at

Exception in thread "main" java.lang.ClassNotFoundException: Failed to find data source: clickhouse. Please find packages at http://spark.apache.org/third-party-projects.html at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(Da

2023-09-25 15:41:02 707

原创 报错:Code: 210. DB::NetException: Connection refused (localhost:9000). (NETWORK_ERROR)

报错:Code: 210. DB::NetException: Connection refused (localhost:9000). (NETWORK_ERROR)clickhouse-client -m --password 123456 启动 clickhouse命令。cd /var/log/clickhouse-server/ //进入日志文件目录。

2023-09-23 18:05:41 2738

原创 (本地安装clickhouse)执行 nstall/doinst.sh时报错: cp: 无法创建普通文件“/usr/bin/clickho

root@bigdata1 clickhouse-common-static-21.9.4.35]# install/doinst.shcp: 无法创建普通文件"/usr/bin/clickhouse": 文本文件忙

2023-09-23 11:10:25 811

原创 关于ClickHouse的表引擎和SQL操作

在 ClickHouse 中创建表的 SQL 语句与 MySQL 类似,但是需要指定引擎类型,例如,使用 MergeTree 引擎存储数据:

2023-09-21 22:45:21 714

原创 clickhouse简单安装部署

在一个真正的列式数据库管理系统中,除了数据本身外不应该存在其他额外的数据。例如,10亿个UInt8类型的数据在未压缩的情况下大约消耗1GB左右的空间,如果不是这样的话,这将对CPU的使用产生强烈影响。即使是在未压缩的情况下,紧凑的存储数据也是非常重要的,因为解压缩的速度主要取决于未压缩数据的大小。0.0.0.0 //将这个注释打开。注意:必须按照以下顺序解压,并且每解压一个都要执行该解压后文件的install/doinst.sh文件。

2023-09-21 16:57:16 1656 2

原创 2024最新:关于基于vue-cli脚手架创建vue项目(图文版)

它确保各种构建工具与合理的默认值一起顺利运行,因此您可以专注于编写应用程序,而不是花费数天时间争论配置。同时,它仍然提供了调整每个工具配置的灵活性,而无需弹出。TypeScript 是一个 JavaScript 的超集,包含并扩展了 JavaScript 的语法,需要被编译输出为 JavaScript 在浏览器运行。代码风格检查和格式化(如:ESLint)【建议选择】vue-router(Vue 路由)【建议选择】。vuex(Vue 的状态管理模式)。E2E(端到端)测试。概述(来源于官方文档)

2023-09-21 11:52:31 645 2

原创 基于vue3 的 Echarts图表展示 (操作全流程)(图文版)

这篇是一个基于vue3上的echarts图表展示文章,无论你有没有基础 编写Vue工程代码,根据接口,用柱状图展示2020年消费额最高的5个省份,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至对应报告中。 1.1 由node去下拉vuecli脚手架(未安装node的请查看文章:安装npm) ​​ 1.2 创建vue项目命令:vue create test3 ​​

2023-09-19 10:56:19 2521 1

原创 报错:To see the full stack trace of the errors, re-run Maven with the -e switch.

[ERROR] Java heap space -> [Help 1][ERROR][ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.[ERROR] Re-run Maven using the -X switch to enable full debug logging.[ERROR][ERROR] For more information about the errors a

2023-09-16 11:04:07 9661 2

原创 hive 静态分区与动态分区(笔记)

Hive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区,这样的查询效率会提高很多,从而可以更快地查询数据。分区可以是静态分区和动态分区静态分区和动态分区各有其优缺点,需要根据实际情况进行选择。静态分区可以提高查询效率,但需要手动维护分区信息;动态分区可以自动维护分区信息,但对于大量数据导入可能会比较慢。

2023-09-15 20:17:56 430

大数据应用与开发-离线数据处理(附有国赛样题卷和对应代码,仅供参考)

大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--离线数据处理(附有国赛样题卷和对应代码,仅供参考)大数据应用与开发--

2024-01-04

大数据应用与开发-E模块解析

1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目 1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目 1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目 1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目 1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目 1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目 1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run serve 启动项目 1.首先用VScode打开,在终端中输入npm i 2.在输入 npm run s

2024-01-04

大数据应用与开发赛项-可视化电商数据

大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化电商数据大数据应用与开发赛项—可视化

2024-01-03

Hadoop平台搭建 1.搭建 步骤文档 2.搭建时要用到的组件安装包

搭建步骤: 准备硬件环境:确保服务器具备足够的内存、存储和网络带宽等资源。 安装Java环境:Hadoop需要Java运行环境,因此需要先安装Java。 下载并解压Hadoop安装包:从官方网站或其他可靠来源下载Hadoop安装包,并解压到指定目录。 配置Hadoop环境变量:设置Hadoop的相关环境变量,以便系统能够找到Hadoop的配置文件和二进制文件。 配置Hadoop集群:根据实际需求,配置Hadoop集群的节点、网络拓扑结构等参数。 启动Hadoop集群:启动Hadoop集群的各个节点,包括NameNode、SecondaryNameNode、DataNode等。 用途: 数据存储和处理:Hadoop可以存储海量数据,并使用MapReduce等编程模型进行数据处理和分析。 数据挖掘和机器学习:通过Hadoop进行大规模数据处理,可以挖掘出数据中的规律和模式,为机器学习和数据挖掘提供支持。 分布式计算:Hadoop可以分布式地处理大规模计算任务,提高计算效率和可靠性。 数据备份和容灾:Hadoop可以作为数据备份和容灾的解决方案,

2023-12-22

echarts.min.js 本地echarts包(可下载学习使用)

echarts.min.js是ECharts的压缩版本,它是由纯JavaScript编写的开源可视化库。这个库可以流畅地运行在PC和移动设备上,兼容当前绝大部分浏览器,包括IE8/9/10/11、Chrome、Firefox、Safari等。它的底层依赖于矢量图形库ZRender,提供了直观、交互丰富、可高度个性化定制的数据可视化图表。 使用场景包括折线图、柱状图、散点图、饼图、K线图等常用图表,而且可以高度个性化定制,例如,颜色、形状、大小等。同时,由于它是纯JavaScript编写,可以灵活地与其他JavaScript库或框架配合使用,以满足更复杂的数据可视化需求。 具体的使用方法需要参考官方文档和示例代码,但一般来说,可以通过简单的配置参数来创建和定制图表。由于它是一个压缩版本,加载速度更快,适用于对性能要求较高的场景,例如实时数据可视化、大屏展示等。

2023-12-07

Vue经典脚手架项目 - TodoList (大学生期中期末项目,可供下载学习)

Vue经典脚手架项目 -- TodoList 启动命令(在当前文件目录下):npm run serve (如未安装npm请异步到https://blog.csdn.net/m0_69097184/article/details/129895487) 是一个基于Vue.js框架构建的简单易用的待办事项管理系统。该项目为大学生提供了一个期末项目的学习和实践机会,通过构建一个实际的TodoList应用,帮助大家深入了解Vue.js框架的核心概念和实际应用。 项目特点: 易上手:该项目的脚手架搭建完善,入门门槛低,方便新手快速上手。 贴近实际:TodoList应用涵盖了待办事项的增删改查功能,贴近实际需求,方便用户管理自己的待办事项。 掌握核心技术:通过该项目,学生可以掌握Vue.js的核心技术,如组件化、双向数据绑定、路由等,提升实际开发能力。 扩展性强:该项目采用了模块化开发,方便用户根据自己的需求进行功能扩展和定制。 完善的文档:项目配备了详细的文档说明,帮助学生理解各个功能模块的实现细节。

2023-12-04

PHP大学生期末项目(可供免费下载学习)

PHP大学生期末项目简介和使用场景 PHP大学生期末项目是一个基于PHP开发的开源软件,旨在为大学生提供一个免费的期末项目学习资源。该项目包含了多个实用的功能模块,可以帮助学生们深入了解PHP编程语言以及Web开发的相关知识。 项目特点: 简单易用:该项目的用户界面简洁直观,方便用户快速上手。 功能全面:涵盖了用户注册、登录、文件上传、数据库管理等多个功能模块,有助于学生全面了解PHP开发过程中的各个方面。 完善的文档:项目配备了详细的文档说明,帮助学生理解各个功能模块的实现细节。 示例代码:项目提供了丰富的示例代码,方便学生参考和学习。 开源免费:作为开源软件,学生们可以自由下载和使用,有助于学习和交流。 使用场景: 学习和实践:大学生可以在自己的电脑上安装该项目,用于学习和实践PHP编程语言以及Web开发的相关知识。 课程项目:教师可以要求学生以该项目为基础,进行课程项目的开发和实现,以检验学生的学习成果和应用能力。 自我提升:即使不是大学生,该项目也可以作为PHP初学者提升技能的工具,通过阅读文档和示例代码,帮助提高编程水平。 案例参考:开发者可以将该项目作为案例参考,从

2023-12-04

hadoop-3.1.3 大数据生态集群(可供免费下载学习)

Hadoop 3.1.3是一个大数据生态集群安装包,它是一个高度可扩展的分布式计算系统,能够处理大规模的数据集。它适合于需要处理大量数据的应用场景,如大数据分析、数据挖掘、数据存储等。 Hadoop 3.1.3的特点包括高可靠性、高扩展性、高容错性等。它可以在低成本硬件上构建集群,并且可以处理各种数据格式和数据源。此外,Hadoop 3.1.3还提供了许多工具和库,帮助开发人员更轻松地编写分布式应用程序。 总之,Hadoop 3.1.3是一个功能强大、灵活的大数据生态集群安装包,适用于各种需要处理大规模数据的应用场景。

2023-12-01

Tomcat-8.5.63 (可免费下载学习使用)

Apache Tomcat 8.5.63 是一个流行的开源 Web 服务器和 Servlet 容器,适用于部署 Java Web 应用程序。它支持最新的 Java EE 版本,并具有高效、稳定和灵活的特性。 Apache Tomcat 8.5.63 适用于以下场景: Java Web 应用程序的部署和运行:Tomcat 是一个标准的 Java EE Web 服务器,可以部署运行各种 Java Web 应用程序,包括基于 Servlet、JSP、AJP 等技术的应用程序。 云平台和容器化:Tomcat 可以作为 Docker 容器来运行,方便在云平台上进行部署和扩展。它也支持 Kubernetes 等容器调度平台,可以轻松地与容器编排和自动化部署工具集成。 微服务架构:Tomcat 可以作为微服务架构中的一部分,提供轻量级的、可扩展的 Web 服务,与其他微服务进行集成和通信。 开发和测试:Tomcat 提供了方便的开发和测试工具,支持对 Java Web 应用程序进行本地开发和调试,方便开发人员快速迭代和测试应用程序。 总之,Apache Tomcat 8.5.63 是 Java

2023-11-29

echarts.js 前端离线图表工具包(可直接下载学习)

ECharts 是一个使用 JavaScript 编写的开源可视化库,它可以在浏览器中呈现数据,并提供了丰富的图表类型和交互功能。 内容概要: ECharts 提供了一套简单易用的 API,用于创建各种类型的图表,包括折线图、柱状图、饼图、散点图、地图等。它支持多种数据格式,如 JSON、CSV、XML 等,并且可以轻松地与各种前端框架集成。ECharts 还提供了丰富的图表样式和主题,用户可以根据自己的需求定制图表外观。 适用人群: ECharts 适用于需要进行数据可视化的开发人员,特别是那些需要创建交互式图表和仪表板的开发人员。它也适合用于需要在网页中展示大量数据的开发人员。 适用场景: 数据可视化:ECharts 可以将数据以图表的形式呈现,使得数据更加直观易懂。 仪表板:ECharts 可以用于创建交互式的仪表板,帮助用户更好地监控和分析数据。 网页展示:ECharts 可以将大量数据以图表的形式呈现在网页上,使得网页更加生动有趣。 报表:ECharts 可以用于创建各种类型的报表,包括柱状图、饼图、折线图等。 可视化分析工具:ECharts 可以用于可视化分析工

2023-11-28

axios.js 本地包,前端接口请求(可免费下载学习使用)

Axios 是一个基于 Promise 的 HTTP 客户端,用于浏览器和 Node.js。它的主要功能包括: 从浏览器中创建 XMLHttpRequests 从 node.js 创建 http 请求 支持 Promise API 拦截请求和响应 转换请求和响应数据 取消请求 自动转换 JSON 数据 客户端支持防止 CSRF/XSRF Axios 的主要优势在于其简洁清晰的 API 和广泛的适应性。由于它基于 Promise,因此它有利于异步操作和错误处理。Axios 还可以很好地处理 HTTP 请求和响应,包括请求和响应的拦截、转换和取消。此外,Axios 还支持防止 CSRF/XSRF,这在许多 Web 应用程序中是重要的安全特性。 适用人群: 前端开发人员:Axios 非常适合与 JavaScript、React、Angular 等前端技术一起使用,以处理异步操作和 HTTP 请求。 后端开发人员:虽然 Axios 主要用于浏览器,但也可以在 Node.js 中使用它来发送 HTTP 请求。这对于与 RESTful API 进行交互非常有用。 全栈开发人员:Axios 的

2023-11-28

基于springboot的电影管理系统,大学生期中/期末项目,毕设等

Spring Boot是一个开源的Java开发框架,它可以帮助开发者快速构建应用程序。下面是一个基于Spring Boot的电影管理系统的概要。 内容概要: 电影管理系统是一个基于Web的应用程序,它可以帮助电影院或影视公司管理电影票的销售、库存和影片信息等。该系统包括以下几个主要功能: 影片信息管理:可以添加、编辑和删除影片信息,包括影片名称、导演、演员、类型和简介等。 电影票销售:可以通过在线售票或线下售票的方式销售电影票,并管理电影院的座位信息和票价信息。 库存管理:可以实时监控电影院的座位占用情况,并自动更新座位库存信息。 用户管理:可以添加、编辑和删除用户信息,包括用户名、密码和角色等。 日志记录:记录系统的操作日志和异常日志,方便管理员进行管理和维护。 适用人群: 该电影管理系统适用于电影院或影视公司的管理人员和工作人员使用。具体包括: 电影院管理人员:可以使用该系统管理电影院的运营情况,监控座位库存和销售情况。 影视公司工作人员:可以使用该系统管理影片信息和演员信息等,并监控影片的销售情况。 观众:可以通过该系统购买电影票并了解最新的影片信息。 适用场景: 该

2023-11-28

sqoop-1.4.7(可直接下载学习使用)附有安装配置教程!

安装配置 sqoop 链接:https://blog.csdn.net/m0_69097184/article/details/134153494 Sqoop 是一款用于在 Apache Hadoop 和结构化数据存储(如关系型数据库)之间进行大规模数据迁移的工具。它提供了命令行界面,使得用户可以方便地执行数据导入和导出操作。 内容概要: Sqoop 1.4.7 安装包主要包括以下内容: Sqoop 命令行工具:用于执行数据迁移任务的客户端工具。 连接器:Sqoop 支持多种数据库连接器,包括 MySQL、PostgreSQL、Oracle 等,用于连接目标数据库。 元数据驱动程序:Sqoop 使用 JDBC 来访问数据库,因此需要相应的元数据驱动程序。 配置文件:Sqoop 的配置文件包括连接配置、任务配置等,用于定制数据迁移任务。 依赖库:Sqoop 需要一些外部依赖库,如 Hadoop、JDBC 驱动等,这些库也会包含在安装包中。 适用人群: Sqoop 1.4.7 适用于以下人群: 数据工程师:数据工程师可以使用 Sqoop 进行大规模数据的迁移和转换,以支持数据分析、数

2023-11-26

clickhouse-21.9.4.35(可直接下载学习使用)附有安装配置教程!

安装配置clickhouse链接:https://blog.csdn.net/m0_69097184/article/details/133135632 clickhouse-client-21.9.4.35.tgz clickhouse-common-static-21.9.4.35.tgz clickhouse-common-static-dbg-21.9.4.35.tgz clickhouse-server-21.9.4.35.tgz ClickHouse是一款高性能的列式数据库管理系统(DBMS),用于在线分析处理(OLAP)和实时分析处理(RTAP)等场景。ClickHouse支持SQL查询,并且可以与许多其他工具集成,如Apache Spark、Elasticsearch等。 内容概要: ClickHouse 21.9.4.35 安装包包括以下内容: ClickHouse 服务器:包含 ClickHouse 数据库的核心组件和服务。 ClickHouse 客户端:用于连接和与 ClickHouse 服务器交互的工具,包括命令行界面和

2023-11-26

hive-3.1.2(可供直接下载学习)

Apache Hive 是一个数据仓库工具,它可以将结构化的数据文件映射为一张数据库表,并提供简单的类 SQL 查询功能。它可以将类 SQL 的语法转换为 MapReduce 任务运行。Hive 可以对数据进行查询、过滤、合并等操作,并可以将结果输出到文件中。Hive 还支持用户自定义函数,方便用户进行数据处理。 内容概要: Apache Hive 3.1.2-bin.tar 包括以下内容: 1. Hive 安装包:包含了 Hive 的二进制文件和相关依赖库。 2. Hive 配置文件:包含了 Hive 的配置参数,如 Hive 的数据存储位置、MapReduce 的作业提交参数等。 3. Hive 元数据存储:Hive 将元数据存储在关系型数据库中,如 MySQL、PostgreSQL 等。 4. Hive 的命令行工具和 API:Hive 提供了一个命令行工具和 API,方便用户进行数据查询和处理。 5. Hive 的 MapReduce 任务:Hive 将 SQL 查询转换为 MapReduce 任务,并提交到 Hadoop 集群上运行。 适用人群: Apache Hive

2023-11-26

Spark 3.1.1(可供免费下载学习)

Apache Spark 3.1.1-bin-hadoop3.2 是一个开源的分布式计算系统,它基于 Hadoop 生态系统,并提供了高性能的数据处理和分析能力。它适用于各种大数据应用领域,如机器学习、数据挖掘、数据仓库等。 内容概要: Apache Spark 3.1.1-bin-hadoop3.2 包括以下内容: 1. Spark Core:这是 Spark 的核心组件,提供了分布式计算的基本功能,包括任务调度、内存管理、通信等。 2. Spark SQL:它提供了一个用于结构化数据处理的 API,可以使用 SQL 或者 Scala、Python 等编程语言进行数据查询和分析。 3. Spark Streaming:它提供了实时数据处理的功能,可以处理实时数据流,如股票交易数据、传感器数据等。 4. MLlib:它提供了一个机器学习库,可以进行各种机器学习任务,如分类、回归、聚类等。 5. GraphX:它提供了一个图计算框架,可以进行图数据的分析和处理。 适用人群: Apache Spark 3.1.1-bin-hadoop3.2 适用于以下人群: 1. 大数据工程师:S

2023-11-26

mysq-connector-java- 5.1.49l驱动包(可供免费下载学习)

MySQL Connector/J 5.1.49 是一个用于连接和与 MySQL 数据库交互的 Java 驱动程序。它提供了一个易于使用的 API,使开发人员能够使用 Java 应用程序与 MySQL 数据库进行通信。 内容概要: MySQL Connector/J 5.1.49 包括以下内容: 1. Java 驱动程序,用于连接和与 MySQL 数据库交互。 2. 提供了一个易于使用的 API,包括连接数据库、执行查询、处理结果集等功能。 3. 支持 MySQL 协议,包括连接、认证和数据交换等功能。 4. 可用于处理大量数据和复杂查询的高性能驱动程序。 5. 支持多种 MySQL 版本和平台。 适用人群: 1. Java 开发人员,需要使用 Java 应用程序连接和与 MySQL 数据库交互。 2. 系统管理员和数据库管理员,需要部署和管理与 MySQL 数据库交互的 Java 应用程序。 3. 任何需要使用高性能驱动程序处理大量数据和复杂查询的人员。 适用场景: MySQL Connector/J 5.

2023-11-26

dolphincheduler-3.1.4(安装包可供免费下载学习)

DolphinScheduler是一个分布式任务调度器,旨在帮助用户轻松构建和管理复杂的任务流程。它支持多种数据源和数据目标,并提供了丰富的数据处理功能,如MapReduce、Hive、Spark等。DolphinScheduler还具有强大的任务调度和监控功能,可以轻松地管理和监控任务的执行情况。此外,它还具有高可用性和可扩展性,可以轻松地扩展到大规模的集群环境中。 内容概要: DolphinScheduler 3.1.4版本包括以下内容: 1. 分布式任务调度器,支持多种数据源和数据目标,如HDFS、Hive、Spark等。 2. 强大的任务调度和监控功能,可以轻松地管理和监控任务的执行情况。 3. 高可用性和可扩展性,可以轻松地扩展到大规模的集群环境中。 4. 易于使用的界面和API,方便用户管理和开发任务流程。 5. 提供了丰富的数据处理功能,如MapReduce、Hive、Spark等。 适用人群: DolphinScheduler适用于以下人群: 1. 需要构建和管理复杂任务流程的开发人员和系统管理员。 2. 需要管理和监控大规模数据处理任务的用户。 3. 需要实现

2023-11-26

Azkaban-3.84.4 安装包(可供免费下载学习)

azkaban-db-3.84.4.tar.gz azkaban-exec-server-3.84.4.tar.gz azkaban-web-server-3.84.4.tar.gz Azkaban是一个简单的批处理调度器,用于构建和运行Hadoop作业或其他脱机过程。webserver、dbserver、executorserver。 内容概要: Azkaban安装包包括以下内容: 1. Azkaban的Java源代码和构建文件。 2. 数据库的SQL脚本,用于创建和初始化Azkaban所需的数据库表。 3. 配置文件,用于配置Azkaban的各种参数和属性。 4. 启动脚本,用于启动和停止Azkaban服务。 适用人群: Azkaban适用于以下人群: 1. 需要运行Hadoop作业的开发人员和数据分析师。 2. 需要调度和执行批量处理任务的开发人员和系统管理员。 3. 需要实现可扩展、可靠和高效的任务调度和执行的管理员和开发人员。

2023-11-26

《秋兴八首 - 其一》优秀PPT- 可供下载使用

秋兴八首 - 其一 内容概要: 《秋兴八首 - 其一》是唐代杜甫的一首重要诗歌,描绘了秋天的景色和对故乡的思念之情。PPT将通过展示诗歌原文、背景介绍、详细解读、艺术手法分析以及诗歌意义和影响等方面的内容,帮助观众全面了解这首诗歌。 适用人群: 本PPT适用于对唐代文学、杜甫诗歌或中国传统文化感兴趣的人群,特别是那些希望深入了解《秋兴八首 - 其一》这首诗歌的读者。 使用场景: 本PPT适用于课堂教学、文学讲座、诗歌朗诵会、文化展览等场合,可以在这些场景中向观众展示这首诗歌的魅力和深度。

2023-11-25

Python员工管理系统(大学生期末作业项目)

项目名称:Python员工管理系统 内容概要: Python员工管理系统是一个使用Python语言开发的管理员工信息的应用程序。它可以帮助企业管理者轻松地输入、查询、更新和删除员工信息,包括基本信息、工资、职位、联系方式等。此外,该系统还可以生成报告,以帮助企业管理者更好地了解员工情况。 适用人群: 本系统适用于任何需要管理员工信息的企业或组织,特别是那些需要高效、灵活、易用的员工信息管理工具的企业。对于学习Python编程语言和数据库管理的初学者来说,这也是一个很好的实践项目。 使用场景: Python员工管理系统可以在各种场景下应用,如企业内部的员工管理部门、人力资源部门、组织机构等。企业管理者可以通过该系统快速输入和查询员工信息,以便更好地了解员工情况,制定更好的人力资源政策。此外,该系统还可以帮助企业管理者更好地了解员工结构,为企业的长远发展提供有力的支持。 说明: Python员工管理系统使用Python语言编写,采用面向对象的设计方法。它基于SQLite数据库进行数据存储,使用Python标准库中的sqlite3模块进行数据库操作。该系统实现了员工信息的添加、查询、

2023-11-25

大学生前端期末考试项目(飞机大战)

项目名称:飞机大战 内容概要: 飞机大战是一个基于HTML、JavaScript和CSS的前端游戏。玩家通过控制飞机移动和射击来击败敌人,同时收集能量球和其他道具以增强自身能力。游戏具有简单易上手的特性,同时画面精美,音效生动。 适用人群: 本游戏适合所有年龄段的玩家,特别是对HTML、JavaScript和CSS有兴趣的人。由于游戏难度适中,因此对于初学者来说,可以作为一个很好的练习项目。对于有一定前端开发经验的人来说,也可以通过本游戏提高自己的技能水平。 使用场景: 飞机大战可以在任何支持HTML、JavaScript和CSS的设备上运行,包括电脑、手机和平板电脑等。由于游戏画面精美、音效生动,因此可以在休闲时刻放松身心,或者在工作学习之余缓解压力。 说明: 在飞机大战中,玩家需要控制飞机移动和射击。当玩家击败敌人或收集能量球和其他道具时,可以获得分数和奖励。游戏共有三个难度级别,难度越高,敌人和障碍物越难对付,同时获得的分数和奖励也越高。玩家可以通过游戏排行榜查看自己的排名和其他玩家的成绩。 在实现飞机大战的过程中,需要使用HTML、JavaScript和CSS等技术。

2023-11-25

vue2(脚手架创建)初始化项目,可直接拿来开发使用,环境已配置好!(空项目包)

Vue 2 是一个广泛使用的 JavaScript 框架,用于构建用户界面。它提供了一种简单而灵活的方式来构建单页应用程序和复杂的交互式 Web 应用程序。Vue 2 的脚手架是一个工具,用于自动化项目的初始化和构建过程。 内容概要: Vue 2 脚手架可以帮助您快速初始化一个 Vue 2 项目。它提供了构建工具、模板和配置文件,以帮助您开始编写 Vue 应用程序。通过使用脚手架,您可以轻松地创建组件、路由、状态管理等,并使用 Vue CLI 进行构建和打包。 适用人群: Vue 2 脚手架适用于任何想要快速开始开发 Vue 2 应用程序的开发人员。无论您是初学者还是经验丰富的开发人员,Vue 2 脚手架都可以帮助您快速进入开发流程,减少初始化的繁琐工作。 适用场景: Vue 2 脚手架适用于各种场景,包括: 单页应用程序(SPA):如果您想要构建一个复杂的单页应用程序,Vue 2 脚手架可以帮助您快速初始化项目并开始开发。 复杂交互式 Web 应用程序:如果您想要构建一个包含大量交互的 Web 应用程序,Vue 2 脚手架可以帮助您快速创建组件、路由和状态管理等,以便您可以专

2023-11-25

vue3(脚手架创建)初始化项目,可直接拿来开发使用,环境已配置好!

内容概要: Vue 3 脚手架可以帮助您快速初始化一个 Vue 3 项目。它提供了构建工具、模板和配置文件,以帮助您开始编写 Vue 应用程序。通过使用脚手架,您可以轻松地创建组件、路由、状态管理等,并使用 Vue CLI 进行构建和打包。 适合于创建项目时用vue cli(脚手架)创建失败的情况 适用人群: Vue 3 脚手架适用于任何想要快速开始开发 Vue 3 应用程序的开发人员。无论您是初学者还是经验丰富的开发人员,Vue 3 脚手架生成的初始化项目可以帮助您快速进入开发流程,减少初始化的繁琐工作。 适用场景: Vue 3 脚手架适用于各种场景,包括: 单页应用程序(SPA):如果您想要构建一个复杂的单页应用程序,Vue 3 脚手架可以帮助您快速初始化项目并开始开发。 复杂交互式 Web 应用程序:如果您想要构建一个包含大量交互的 Web 应用程序,Vue 3 脚手架可以帮助您快速创建组件、路由和状态管理等,以便您可以专注于编写业务逻辑。 大型企业级应用程序:如果您正在构建一个大型企业级应用程序,Vue 3 脚手架可以帮助您自动化构建和测试流程,以便您可以更高效地开发和管理

2023-11-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除