一道初等数论题

一道题:
离散对数在密码学中有重要的应用,设 p p p 是素数,集合 X = { 1 , 2 , ⋯   , p − 1 } X=\{1,2,\cdots,p-1\} X={1,2,,p1}, 若 u , v ∈ X u,v\in X u,vX, m ∈ N m\in\mathbb{N} mN, 记 u ⊗ ν u\otimes\nu uν u ν u\nu 除以 p p p 的余数, u m , ⊗ u^{m,\otimes} um, u m u^m um 除以 p p p 的余数;设 a ∈ X a\in X aX, 1 , a , a 2 , ⊗ , ⋯   , a p − 2 , ⊗ 1,a,a^{2,\otimes},\cdots,a^{p-2,\otimes} 1,a,a2,,,ap2,两两不同,若 a n , ⊗ = b ( n ∈ { 0 , 1 , ⋯   , p − 2 } ) a^{n,\otimes}=b\left(n\in\{0,1,\cdots,p-2\}\right) an,=b(n{0,1,,p2}),则称 n n n是以 a a a为底 b b b 的离散对数,记为 n = log ⁡ ( p ) a b   . n=\log(p)_{a}b\:. n=log(p)ab.

证明:已知 n = log ⁡ ( p ) a b n=\log(p)_ab n=log(p)ab、对 x ∈ X x\in X xX, k ∈ { 1 , 2 , ⋯   , p − 2 } k\in\{1,2,\cdots,p-2\} k{1,2,,p2},令 y 1 = a k , ⊗ y_1=a^{k,\otimes} y1=ak,, y 2 = x ⊗ b k , ⊗ y_2=x\otimes b^{k,\otimes} y2=xbk,.证明: x = y 2 ⊗ y 1 n ( p − 2 ) , ⊗   . x=y_{2}\otimes y_{1}^{n(p-2),\otimes}\:. x=y2y1n(p2),.

解答过程:(手写,仅供参考)

做这道题的原因:当时因为自己某个原因做了这道题,保存下来,仅供参考。

微信公众号:数学专业的小白

  • 11
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学专业的小白

给小白买杯奶茶让他变胖

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值