115.不同的子序列
1.首先容器大小要设置为uint64_t,不然会越界,不能全部通过。
2.理解递推公式:
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
这里我将s,t遍历顺序改变了。
class Solution {
public:
int numDistinct(string s, string t) {
vector<vector<uint64_t>> dp(t.size() + 1, vector<uint64_t>(s.size() + 1, 0));
// 初始化第一行,表示当 t 为空字符串时,s 的任意前缀子序列中包含 t 的情况为 1
for (int j = 0; j <= s.size(); ++j) {
dp[0][j] = 1;
}
// 填充 dp 矩阵
for (int i = 1; i <= t.size(); ++i) {
for (int j = 1; j <= s.size(); ++j) {
if (t[i - 1] == s[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1];
} else {
dp[i][j] = dp[i][j - 1];
}
}
}
return dp[t.size()][s.size()];
}
};
583. 两个字符串的删除操作
主要是计算出两个字符串的最长公共子序列。前面题目做过。
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
for (int i = 1; i <= word1.size(); ++i) {
for (int j = 1; j <= word2.size(); ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
else{
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
int total=dp[word1.size()][word2.size()];
int res=word1.size()-total + word2.size()-total;
return res;
}
};
下面这种方法也行。
用删除的办法,这里的dp数组的则是表示删除的最小次数。
还要注意初始化,例如word1=空,word2=abbb, 如果想要将word2变为word1,我们最少需要word2大小的步数。
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
}
}
}
return dp[word1.size()][word2.size()];
}
};
72. 编辑距离
这题和上面一题很类似,主要就是要将对word1的增加操作理解为对word2的删除操作。如果是替换,则表示前面的元素都相同了,我们不需要删除增加操作,所以我们要将前一次的最小编辑次数dp[i-1][j-1]加上一,代表替换操作。然后取最小值。
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
for (int i = 0; i <= word1.size(); ++i) {
dp[i][0] = i;
}
for (int j = 0; j <= word2.size(); ++j) {
dp[0][j] = j;
}
for (int i = 1; i <= word1.size(); ++i) {
for (int j = 1; j <= word2.size(); ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else{
dp[i][j] = min({dp[i - 1][j], dp[i][j - 1],dp[i-1][j-1]}) +1;
}
}
}
return dp[word1.size()][word2.size()];
}
};