自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 机器学习part6:softmax回归的简洁实现

从nn中取到交叉熵损失函数作为损失函数然后定义优化器,同样可以从torch的optim中取出SGD优化器,传入需要优化的参数和学习率lr,这里用net.parameter可以非常方便地取出并传入。

2025-04-12 22:23:38 122

原创 机器学习part5:softmax回归从零开始实现

我们可以先回顾一下矩阵的求和,按0维求和的话,就是按行求和,其实按照第几维求和就是按照从内到外第几个括号求和知道这个操作之后我们就可以实现我们的softmax回归这里的X实际上是输出层的结果,我们首先对每一个元素做指数计算,接下来我们按维度1求和,就是按行求和然后用每一个指数除以归一化因子,这里巧妙地应用了广播机制我们将每一个元素变成一个非负数。此外依据概率原理,每行总和为1可以print出结果为实现softmax回归的模型。

2025-04-12 22:23:07 935

原创 机器学习part4:读取图像分类数据集

将图像数据转换为 PyTorch 张量,并将像素值缩放到[0.0, 1.0],如果需要重新设置大小,则在操作列表trans中嵌入。且参数0表示嵌入的是表头。:将多个转换操作组合成一个整体的转换流程。然后得到整体的转换操作最后这个函数返回训练集和测试集的两个迭代器"""下载Fashion-MNIST数据集,然后将其加载到内存中"""if resize:breakbreak。

2025-04-12 22:22:35 664

原创 机器学习part3:回归和分类

MNIST:用于手写数字识别1-10的数据集(10类) 我们就要识别10个类别ImageNet:用于自然物体分类的数据集 (1000类) 我们就要识别1000个类别。

2025-04-12 22:22:01 297

原创 pytorch学习3:torchvision的学习

pytorch提供了一些官方的数据集,只针对图像领域来说,有一个库叫torchvision,它提供了很多图像数据集方面的功能。orchvision是 PyTorch 中处理计算机视觉任务的重要工具。数据集:加载常用的数据集,如 MNIST、CIFAR-10 等。预训练模型:直接使用经典的预训练模型。数据转换:进行图像预处理和数据增强。实用工具:支持图像保存、视频处理等操作。通过这些功能,大大简化了图像数据的处理和模型的训练过程。

2025-04-11 10:54:11 546

原创 机器学习part2:线性回归模型的简洁实现

我们可以运用torch中的nn来快速构建一个模型,nn确实就是NeuroNetwork的缩写,记得要from torch import nn我们使用框架的预定义号的层构建一个网络net,它是一个输入为2输出为1的全连接层我们定义好了之后可以通过weight和bias来修改初始化模型的参数,我们把权重设计成均值为0方差为0.01的正态分布随机数,偏置设为0net[0]表示Sequential中的第一个子模块,我们模块中只有一层,所以其实也可以把这个[0]去掉。normal_和fill_后面的。

2025-04-10 20:20:16 904

原创 pytorch学习2:torch.nn的学习

在神经网络中,前向传播(Forward Propagation)是指输入数据通过网络逐层传递,直到产生输出的过程。它是神经网络计算输出的关键步骤,也是训练和推理过程中不可或缺的一部分。输入数据:前向传播从输入数据开始。逐层计算:输入数据通过每一层的计算,逐层传递。输出结果:最终经过所有层的计算后,得到网络的输出。前向传播的过程可以分为以下几个步骤:输入数据进入网络,通常是张量形式(如图像、文本嵌入等)。输入数据通过隐藏层的计算。经过所有隐藏层的计算后,数据到达输出层,产生最终的输出结果。

2025-04-10 19:56:20 453

原创 pytorch学习1:dataset和dataloader学习

dataLoader可以从数据集随机加载数据并拼接成一个batch,实现迭代器(迭代获取数据内容),因为这个功能是通用的所以不用叫imagedataloader,叫dataloader就行了,该方法实现的就是输入数据集和batch_size,每次打乱返回,直到结束。他们的出现也源于程序员们对于数据集进行加载、读取的需要。print之后可以看到我们构建的数据集,样本长度为100,每一个[]前面是特征,后面是标签。dataset可以储存数据集的信息、获取数据集长度、获取数据集特定条目的内容。

2025-04-10 15:34:27 250

原创 机器学习part1:线性回归模型

w,b和num_examples都定义一下,然后运用写的方法生成样本特征和标签首先需要设两个未知数,用normal和zeros方法进行定义,属性记得要加上需要计算梯度requires_grad=True定义线性模型linreg,参数有3个,为简单的一次函数#初始化模型参数#定义模型定义损失函数的方法,有2个参数,返回值为差值的平方除以2#定义损失函数定义优化算法的方法,有三个参数params代表要优化的参数,lr代表学习率,batch_size代表了每一次迭代的次数。

2025-04-08 20:15:49 604 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除