- 博客(8)
- 收藏
- 关注
原创 Datawhale AI 夏令营Task02笔记-Deepfake多模态学习者
这些网络结构能够模拟人脑处理信息的方式,通过复杂的层级结构自动学习数据中的高级抽象特征,而不需要人工进行特征工程(即手动设计特征)。神经元模型是模拟生物神经元行为的计算模型,它在人工智能和机器学习领域扮演着核心角色神经元就像人体大脑中的微小开关,能够接收来自其他神经元的信号,并根据这些信号的产生反应。迁移学习的核心思想是找到一个源任务(通常是有大量标注数据的任务),并在该任务上训练一个模型,然后将这个模型的知识迁移到目标任务(通常是数据稀缺或标注数据难以获取的任务)上。这些卷积层旨在提取图像的特征。
2024-07-17 20:34:03 644
原创 InternLM实战营第二期笔记·⑦「OpenCompass 大模型评测实战」
确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出。即可列出所有跟 InternLM 及 C-Eval 相关的配置。
2024-04-24 02:27:45 341
原创 InternLM实战营第二期笔记·⑥「Lagent & AgentLego 智能体应用搭建」
首先下载 demo 文件:AgentLego 所实现的目标检测工具是基于 mmdet (MMDetection) 算法库中的 RTMDet-Large 模型,因此我们首先安装 mim,然后通过 mim 工具来安装 mmdet。执行direct_use.py 的代码如下:import reimport cv2执行,可以看到如下结果。
2024-04-23 19:26:53 688
原创 InternLM实战营第二期笔记·⑤「LMDeploy 量化部署 LLM 实践」
InternStudio上提供了快速创建conda环境的方法。打开命令行终端,创建一个名为lmdeploy的环境:成功后显示:可以运行如下命令查看开发机的共享目录中常用的预训练模型:显示如下,每一个文件夹都对应一个预训练模型。
2024-04-23 01:54:39 1095
原创 InternLM实战营第二期笔记·④「【XTuner 微调 LLM:1.8B、多模态和 Agent】」
再然后我们根据自己的显存及任务情况确定了使用 InternLM2-chat-1.8B 这个模型,并且将其复制到我们的文件夹里。最后我们在 XTuner 已有的配置文件中,根据微调方法、数据集和模型挑选出最合适的配置文件并复制到我们新建的文件夹中。我们首先是在 GitHub 上克隆了 XTuner 的源码,并把相关的配套库也通过 pip 的方式进行了安装。# -p选项意味着如果上级目录不存在也会一并创建,且如果目标文件夹已存在则不会报错。# 进入家目录 (~的意思是 “当前用户的home路径”)
2024-04-23 01:52:44 463
原创 InternLM实战营第二期笔记·③「茴香豆:搭建你的 RAG 智能助理】」
教程链接:https://github.com/InternLM/Tutorial/blob/camp2/huixiangdou/readme.md视频链接:https://www.bilibili.com/video/BV1QA4m1F7t4/
2024-04-14 21:28:05 853 2
原创 InternLM实战营第二期笔记·②「轻松玩转书生·浦语大模型趣味 Demo」
Top-p策略是根据累积概率的方式选择候选词。首先计算所有可能的下一个词的概率分布,并按概率降序排序。然后,选择累积概率超过某个阈值p的最高概率的词,形成一个动态的词汇范围,该范围包含了累积概率达到p的所有词。模型首先计算所有可能的下一个词的概率分布,并按概率降序排序。然后,选择概率排名在前k位的词作为候选词汇,其余词被排除在外。x这种策略会根据累积概率动态地调整词汇范围,从而在保留一定准确性的同时增加了生成的多样性。这种策略只考虑概率排名在前k位的词,生成结果更确定。
2024-04-04 18:45:27 309 1
原创 InternLM实战营第二期笔记·①「书生·浦语大模型全链路开源体系+InternLM2技术报告」
第一次课程视频链接【书生·浦语大模型全链路开源体系】 https://www.bilibili.com/video/BV1Vx421X72D/?
2024-03-31 18:07:26 854 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人