该题还可用dfs,没学到,待学到再回看。
问题描述
小蓝认为如果一个数含有偶数个数位,并且前面一半的数位之和等于后面一半的数位之和,则这个数是他的幸运数字。例如 2314 是一个幸运数字, 因为它有 4 个数位, 并且 2+3=1+4 。现在请你帮他计算从 1 至 100000000 之间共有多少个不同的幸运数字。
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
运行限制
语言 最大运行时间 最大运行内存
C++ 1s 256M
C 1s 256M
Java 2s 256M
Python3 3s 256M
PyPy3 3s 256M
//计算总长度 数据太大不仅可以用long long还可以用 string
//转成字符串方便取数 以及 计算长度 根本不用/10%10 难取! string str=to_string(i)
//取单个元素 遍历字符串并转为数字 string->int s[i]-'0'
//左边和 i<size/2 left+=左单个元素
#include<iostream>
#include<string>
using namespace std;
using ll = long long;
ll ans = 0;
bool check(string s){
int l = s.size();
int left=0,right=0;
for(int i=0;i<l;i++){
int num = s[i]-'0';//取单个元素 直接遍历 int num=x[i]-'0'; 左边数累加 l/2
if(i<l/2){
left+=num;
}
else{
right+=num;
}
}
if(left==right)return true;
return false;
}
int main(){
for(int i=11;i<1e8;i++){
string str = to_string(i);
if(str.size()%2!=0)continue;
if(check(str))ans++;
}
cout<<ans;
//得到最终答案4430091
return 0;
}
KY85 二叉树
如上所示,由正整数1,2,3……组成了一颗特殊二叉树。我们已知这个二叉树的最后一个结点是n。现在的问题是,结点m所在的子树中一共包括多少个结点。 比如,n = 12,m = 3那么上图中的结点13,14,15以及后面的结点都是不存在的,结点m所在子树中包括的结点有3,6,7,12,因此结点m的所在子树中共有4个结点。
输入描述:
输入数据包括多行,每行给出一组测试数据,包括两个整数m,n (1 = m = n = 1000000000)。
输出描述:
对于每一组测试数据,输出一行,该行包含一个整数,给出结点m所在子树中包括的结点的数目。
示例1
输入
3 12 0 0
输出
4
#include <iostream>
using namespace std;
//总共n个结点 结点m的子树
//假设子树m 左子树和右子树数量已知
//根p 左2p 右2p+1
int tree(int m,int n){
if(m>n){//子树根不存在
return 0;
} else{
return tree(2*m,n)+ tree(2*m+1,n)+1;
}
}
int main() {
int m, n;
while (scanf("%d%d", &m, &n) != EOF) {
printf("%d\n", tree(m, n));
}
return 0;
}