- 博客(10)
- 收藏
- 关注
原创 从线性到非线性:掌握支持向量机的艺术
支持向量机(Support Vector Machine,简称SVM)是一种强大的监督学习算法,在数据分类和回归分析等领域广泛应用,与上一篇博客感知机入门:从理论到实践的完整指南不同,支持向量机不仅可以线性可分的数据集进行分类,也可以使用核函数对非线性可分的数据集进行分类。
2024-04-29 19:00:33 814 1
原创 感知机入门:从理论到实践的完整指南
感知机是一种简单的线性二分类模型,其基本形式是一个二分类的线性分类器。由Frank Rosenblatt于1957年提出,感知机是神经网络,支持向量机以及逻辑回归分析的基础。感知机模型旨在找到一个能够将两类数据完全正确分开的分离超平面。
2024-04-28 21:57:13 1038
原创 深入解析线性回归:算法原理、应用与Python实战案例
通过本文的介绍,我们不仅详细了解了线性回归的基本原理、不同类型的线性回归模型,而且通过具体的Python实现示例,深入探讨了线性回归在实际问题中的应用。线性回归虽然是最基础的预测技术之一,但它的应用范围极广,从经济学到生物统计,从市场分析到社会科学,都能发现它的身影。通过实际案例的分析,我们可以看到,线性回归模型能够为我们提供有价值的洞察,帮助我们预测和解释关键因素对结果变量的影响。
2024-04-27 16:59:54 2052 1
原创 探索机器学习的奥秘:从算法到应用全景解析
机器学习作为人工智能的一个分支,近几年来飞速发展,本文从机器学习的定义出发,分别介绍了机器学习的分类,发展历程,应用领域以及几个比较好用的python库
2024-04-27 14:28:31 970
原创 解决机器学习中不平衡数据集的挑战:SMOTE技术简介与Python实战
在机器学习的众多挑战中,处理不平衡数据集是一个非常重要的问题。不平衡数据集意味着某些类的样本数量远多于其他类,这种情况在金融欺诈检测、医疗疾病诊断等领域尤为常见。本文将详细介绍如何通过合成少数过采样技术(SMOTE)有效地处理不平衡数据集,并提高机器学习模型对少数类的预测能力。
2024-04-26 19:49:57 1447 2
原创 利用机器学习进行图像分类:以TensorFlow和Keras为例
图像分类是机器学习领域中的一项核心任务,其目标是将图像按照内容分类到预定义的类别。在现代应用中,图像分类任务常常依赖于深度学习技术,尤其是卷积神经网络(CNN),这一技术已成为行业标准。随着技术的进步,像TensorFlow和Keras这样的框架极大地简化了这一过程,提供了用户友好的API,使得个人和企业都能轻松地开发、训练和部署复杂的图像分类模型。TensorFlow是Google开发的开源机器学习库,它允许开发者从概念阶段直接转入生产阶段,而无需重写代码,支持多种深度学习架构特别是卷积神经网络。
2024-04-25 19:05:05 1007 1
原创 利用python和K-NN算法解决分类问题
机器学习是人工智能的一个核心领域,它使计算机可以从数据中学习并做出决策。在众多机器学习方法中,K-最近邻(K-NN)算法是最简单直观的分类和回归方法之一。本文将通过一个简单的例子—使用K-NN算法进行分类,来介绍其基本概念和应用。我们的任务是通过花的尺寸数据(花瓣长度、花瓣宽度)来预测花的种类。我们将使用著名的鸢尾花数据集(Iris dataset),该数据集包含3种不同类型的鸢尾花(Setosa、Versicolour和Virginica)的50个样本。
2024-04-24 21:03:47 819
原创 多重网格法的Matlab实现
多重网格法是一种高效的数值算法,用于求解大规模线性和非线性偏微分方程,本文使用多重网格法近似求解一个简单的偏微分方程并对结果进行分析,得出多重网格法比两网格法的迭代次数低得多。
2024-04-23 17:33:51 1620
原创 两网格法的Matlab实现
通过Matlab实现两网格法对一个简单偏微分方程的近似计算,同时对运行结果进行分析得出两网格法可以提升近似计算效率但是迭代步数往往比较大的结论。
2024-04-22 19:39:12 1637
原创 Paillier加密代码实现
Paillier加密是一种十分流行的部分同态加密算法,在python中有很多库可以直接实现Paillier同态加密,比如pypaillier以及phe库,然而在实际应用时,直接调用库函数经常会报错,因此我们需要根据具体的问题设计函数来实现Paillier加密。
2024-04-22 15:30:21 501
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人