自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 第 10 课:PPML入门/基于SPU机器学习建模实践

前端:负责接收和处理机器学习程序,将高层次的机器学习任务转化为底层的计算指令。支持多种机器学习前端如JAX、PyTorch、TensorFlow,方便用户使用熟悉的工具进行开发。编译器:负责将前端的机器学习程序编译成SPU的中间表示(IR),并对IR进行优化,以提高计算效率。PPHLO(Privacy-Preserving High-Level Operations):一种高层次的隐私保护计算表示,支持各种机器学习操作。运行时。

2024-06-29 19:48:02 723

原创 第 11 课:组件介绍与自定义开发

运行报告也是一种DistData,通常作为部分组件的输出,用户界面可以根据定义来渲染运行报告。•Div:页面的一个部分或节,由Descriptions、Tables或Divs组成。•Descriptions:以组的形式显示多个只读字段。•隐语提出的适用于隐私计算应用的一系列协议的集合。·目前包括数据,组件,节点执行,运行报告等协议。•Report:报告的顶级,由Tabs组成。•Tab:报告的一个页面,由Divs组成。•隐语生态各模块均遵守本标准。• version:组件的版本。•Table:显示数据的行。

2024-06-29 19:44:13 246

原创 第 12 课:基于隐语的VisionTransformer框架

NPCVIT框架是基于隐语的Vision Transformer,旨在在保护数据和模型隐私的同时,提高图像分类的推理效率和准确性。此外,还介绍了NPCVI微型Transformer框架,包括其神经网络架构、隐私推理框架和实验结果。还有关于NPCYT算法流程的详细说明,包括整体算法流程、搜索空间设计、神经架构搜索算法和架构参数二值化的内容。同时,详细介绍了英语的SPU(安全处理单元),包括前端神经网络模型编写、隐私计算和通信参数配置等方面。

2024-06-29 19:43:23 240

原创 第 9 课:SML入门/基于SPU迁移机器学习算法实践

18),则平方运算造成的0-2bit误差可能会对结果造成显著的影响,甚至可能从最小正数溢出到最小负数。• 与simulation不同,此时需要先将明文数据”密封” ,否则SPU会将其视作Public数据而无法密态下计算!• 计算精度较低,乘法依赖truncation,数学函数,通常使用近似解(不同算子误差范围不同)[1].Spu中能表示的最小正数为: 2![3].使用不带截断的Sigmoid近似(SR):减少梯度为0的概率。[3].使用不带截断的Sigmoid近似(SR):减少梯度为0的概率。

2024-06-29 19:42:20 957

原创 第 8 课:密态引擎SPU框架介绍

基于密码学的隐私计算,提供了非常有限的计算能力,加密计算有易用性差(类型简单,加/乘/与/或等,算子比较底层),性能较差等挑战。SPU的编程界面,使用原生AI框架,使用JIT编译执行,生态无缝衔接,通过修改配置文件即可更改安全协议,无需代码修改。SPU作为一个虚拟设备,也提供了配套的工具链的支持(Profiling、Tracing,Debugging),从而对上层应用和下层协议进行针对性优化以及错误排查。以大模型预测场景为例,模型是公司的资产,提示词包含用户隐私,如何同时保护模型和提示词。

2024-06-29 19:38:27 209

原创 第 7 课:XGB算法与SGB算法开发实践,学习笔记

经典算法到MPC算法需要进行算法改造三部曲,确定保护的数据部分、准备安全原语和改造数据结构和算法。2. 通常需要前置求交集,SS-XGB/SGB XGB有优势的场景包括提高AUC、合作完成建模以及更多数据->更多价值等。1. 隐语提供的纵向树模型算法实现了XGB的经典功能,采用MPC进行密态计算,无信息泄漏,可证安全。1. 纵向树模型是基于纵向分割数据集训练的决策树模型,相同样本在不同特征维度上进行训练。2. 当用ss-XGB跑完相同的流程后,它的test AUC是多少?二、使用-隐语纵向树模型。

2024-06-29 19:32:17 195

原创 逻辑回归LR与广义线性模型GLM开发实践

在选择使用哪一个时,我们需要考虑问题的类型、数据的特性以及计算资源的限制等因素。例如,对于二分类问题,如果数据的分布符合二项分布的假设并且计算资源有限,逻辑回归可能是一个更好的选择。而对于多分类或有序分类问题,或者当因变量的分布不符合任何预先设定的形式时,广义线性模型可能更加合适。它的核心思想是将逻辑函数(sigmoid函数)应用于线性回归的预测值,从而将原始的实数输出转换为概率形式。广义线性模型是对数线性模型的通用形式,它可以扩展到多分类、有序分类和回归问题。三、逻辑回归与广义线性模型的比较与选择。

2024-06-29 19:29:13 151

原创 第 5 课:基于隐私保护的机器学习算法介绍

因此,基于隐私保护的机器学习算法应运而生,旨在在保护数据隐私的同时,实现高效的模型训练和应用。同态加密的计算复杂度和存储开销较大等。隐私保护机器学习算法可以用于金融欺诈检测、风险评估和信用评分等任务,保护用户隐私的同时提高金融服务的效率和准确性。在机器学习中,同态加密可以用于保护模型训练过程中的数据和模型参数,防止数据泄露和模型被窃取。这些算法通过不同的技术手段,在保护数据隐私的同时,实现了模型的训练和推理。基于隐私保护的机器学习算法可以在保护患者隐私的同时,实现疾病的预测、诊断和治疗方案的优化。

2024-06-11 15:52:33 525

原创 第 4 课:SecretFlow与Secretnote的安装部署

SecretFlow 安装和部署概述。

2024-06-11 15:47:24 388

原创 隐语实训营-第3讲:详解隐私计算框架的架构和技术要点

隐语分层架构设计,可以支持不同的技术路线,同时使得层内高内聚,层间低耦合,增强了开放性,不同技术路线的研究人员都可以在对应的层发挥自己的优势。• SecretNote:Notebook形式,可以跟踪运行状态,进行交互式建模,以及多节点的管理和交互。• 多方安全数据分析系统,可以使互不信任的参与方在保护自己数据隐私的前提下,完成多方数据分析任务。• PIR:用户查询服务端数据库中的数据,但服务端不知道用户查询的是哪些数据。• PSI:一种特殊的MPC协议,求两方数据的交集,除此之外不泄露其他信息。

2024-06-11 15:41:05 373

原创 隐私计算实训营 第2期-第2讲 隐私计算开源如何助力数据要素流通

在第一阶段,数据平台方主要靠【主体可信】,往往是国有企业身份。但这是不够的,要逐渐从【主体可信】向【主体可信+技术可信】发展。可以通过数据空间技术+区块链技术实现。区块链技术主要用于数据使用记录的存证。如果数据被数据消费方拷贝走,让数据价值迅速降低;主要通过数据匿名化实现,比如手机号通过加盐+sha256等方式转为非明文。主要是通过数据转为密态计算来实现,隐私计算是解决这一问题的关键技术。数据平台方,是为了解决数据提供方和数据消费方的疑虑出现的。关键主体至少有3个:数据提供方、数据消费方、数据平台方。

2024-06-11 15:37:04 385

原创 隐私计算实训营第二期 第一课 数据可信流通:从运维信任到技术信任学习笔记

数据持有方在自己的运维安全领域内对自己的数据使用和安全拥有全责。① 可信数字应用身份:从主体身份扩展至应用身份。③能力预期:通用安全分级标准,平衡功能与成本。② 使用权跨域管控:利益对齐的核心技术要求。④全链路审计,闭环完整的数据可信流通体系。

2024-06-11 15:33:06 234

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除