题目描述
有形如:a x^3 + b x^2 + c x + d = 0ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,da,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 -100−100 至 100100 之间),且根与根之差的绝对值 \ge 1≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 22 位。
提示:记方程 f(x) = 0f(x)=0,若存在 22 个数 x_1x1 和 x_2x2,且 x_1 < x_2x1<x2,f(x_1) \times f(x_2) < 0f(x1)×f(x2)<0,则在 (x_1, x_2)(x1,x2) 之间一定有一个根。
输入格式
一行,44 个实数 a, b, c, da,b,c,d。
输出格式
一行,33 个实根,从小到大输出,并精确到小数点后 22 位。
输入输出样例
输入 #1复制
1 -5 -4 20
输出 #1复制
-2.00 2.00 5.00
说明/提示
【题目来源】
NOIP 2001 提高组第一题
采用数学二分法,非暴力枚举
#include <stdio.h>//二分法
double a,b,c,d;//定义总变量方便下面书写
double suan(double i)
{
double j = a*i*i*i+b*i*i+c*i+d;
return j;
}
int main()
{
scanf("%lf %lf %lf %lf",&a,&b,&c,&d);
double i,d1,d2,mid,l,r;
for(i = -100; i < 100; i++)
{
d1 = suan(i);
d2 = suan(i+1);
if(d1*d2<=0)//这种情况下才会有根
{
if(d1==0)
printf("%.2f ",i);
else if(d2==0)
{
printf("%.2f ",i+1);//记得i+1
i++;//少算一次,避免重复
}
else
{
l = i,r = i+1;//赋值方便下面运算
while(r-l>1e-3)
{
mid = l+(r-l)/2.0;
if(suan(l)*suan(mid)<=0)
r = mid;//很巧妙方便
else
l = mid;//很巧妙方便
}
printf("%.2f ",mid);
}
}
}
return 0;
}