对于加载模型来说,在加载模型的时候指定map_location='cpu'就可以解决,我遇到的问题是,保存准确率时,直接将在GPU上的准确率保存在pkl文件中了,在画图阶段提示有数据在GPU上,无法正确加载,在网上找了一段时间,发现解决这个问题的回答很少,最终在stackoverflow(python - load pickle file obtained from GPU to CPU - Stack Overflow)上找到了了解决方法,使用下述代码成功解决我的问题,我的train.acc.txt是使用pickle文件保存的字典类型数据。CPU_Unpickler()是一个自定义的反序列化类,用于将序列化的 PyTorch 对象加载到 CPU 上(即使它们最初是为 GPU 保存的)。这是为了避免在没有 GPU 的机器上加载 GPU 的序列化对象时报错。ChatGPT给的解释
class CPU_Unpickler(pickle.Unpickler): def find_class(self, module, name): if module == 'torch.storage' and name == '_load_from_bytes': return lambda b: torch.load(io.BytesIO(b), map_location='cpu') else: return super().find_class(module, name) with open(f'./test/train_acc.txt', 'rb') as f: mydict1 = CPU_Unpickler(f).load()