【每日力扣】235. 二叉搜索树的最近公共祖先与39. 组合总和问题描述

文章讲述了如何在二叉搜索树中寻找两个指定节点的最近公共祖先,介绍了递归和迭代两种方法,并探讨了如何使用回溯算法解决组合总和问题,即在给定无重复元素数组中找到使数字和为目标数的不同组合。
摘要由CSDN通过智能技术生成

在这里插入图片描述

🔥 个人主页: 黑洞晓威
😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害。

235. 二叉搜索树的最近公共祖先

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

img

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。

首先,让我们回顾一下二叉搜索树的性质:

  1. 二叉搜索树是一种有序树,对于任意节点,其左子树中的所有节点的值均小于该节点的值,右子树中的所有节点的值均大于该节点的值。
  2. 二叉搜索树中不存在重复的节点值。

基于这些性质,我们可以利用递归或迭代的方法来寻找最近公共祖先。

方法一:递归

递归是一种直观且常用的方法,它可以通过不断地向下递归来找到最近公共祖先。

步骤:
  1. 从根节点开始遍历树。
  2. 如果当前节点的值大于 p 和 q 的值,则最近公共祖先在当前节点的左子树中。
  3. 如果当前节点的值小于 p 和 q 的值,则最近公共祖先在当前节点的右子树中。
  4. 如果当前节点的值介于 p 和 q 的值之间(包括 p 和 q 的值),则当前节点就是最近公共祖先。
class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int x) { val = x; }
}

public class LowestCommonAncestorBST {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null) return null;
        
        if (root.val > p.val && root.val > q.val) {
            return lowestCommonAncestor(root.left, p, q);
        } else if (root.val < p.val && root.val < q.val) {
            return lowestCommonAncestor(root.right, p, q);
        } else {
            return root;
        }
    }
}

方法二:迭代

迭代方法则利用 BST 的特性,在遍历过程中找到最近公共祖先。

步骤:
  1. 从根节点开始,不断循环直到找到最近公共祖先。
  2. 如果当前节点的值大于 p 和 q 的值,则最近公共祖先在当前节点的左子树中。
  3. 如果当前节点的值小于 p 和 q 的值,则最近公共祖先在当前节点的右子树中。
  4. 如果当前节点的值介于 p 和 q 的值之间(包括 p 和 q 的值),或者当前节点的值等于 p 或 q 的值,则当前节点就是最近公共祖先。
import java.util.LinkedList;
import java.util.Queue;

class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int x) { val = x; }
}

public class LowestCommonAncestorBST {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        while (root != null) {
            if (root.val > p.val && root.val > q.val) {
                root = root.left;
            } else if (root.val < p.val && root.val < q.val) {
                root = root.right;
            } else {
                return root;
            }
        }
        return null;
    }
}

39. 组合总和问题描述

给定一个无重复元素的整数数组 candidates 和一个目标整数 target,要求找出 candidates 中可以使数字和为目标数 target 的所有不同组合,并以列表形式返回。同一个数字可以被选取多次,不同数量的数字被选取算作不同的组合。

示例

假设 candidates = [2, 3, 6, 7]target = 7,则组合总和为 7 的所有不同组合有 [[2, 2, 3], [7]]

解题思路

要解决组合总和问题,可以使用回溯算法来搜索所有可能的组合。回溯算法是一种递归的搜索方法,它通过不断地探索所有可能的路径,并在搜索过程中进行剪枝,以提高效率。

下面是使用回溯算法解决组合总和问题的步骤:

  1. 对候选数组 candidates 进行排序,方便剪枝和去重。
  2. 定义一个回溯函数 backtrack(start, target, path),其中 start 表示当前搜索的起始位置,target 表示当前目标数,path 表示当前的组合路径。
  3. 在回溯函数中,如果 target == 0,说明找到了一组组合,将其加入结果列表中并返回。
  4. 如果 target < 0,说明当前组合不合法,直接返回。
  5. 对于每个候选数,递归搜索其下一层可能的组合,更新 starttargetpath,然后继续调用回溯函数。
  6. 最终返回所有满足条件的组合。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class CombinationSum {

    public static List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> result = new ArrayList<>();
        Arrays.sort(candidates); // 对候选数组排序,方便剪枝和去重
        backtrack(candidates, target, 0, new ArrayList<>(), result);
        return result;
    }

    private static void backtrack(int[] candidates, int target, int start, List<Integer> path, List<List<Integer>> result) {
        if (target == 0) {
            // 找到一组组合,加入结果列表中
            result.add(new ArrayList<>(path));
            return;
        }
        if (target < 0) {
            // 当前组合不合法,直接返回
            return;
        }
        for (int i = start; i < candidates.length; i++) {
            path.add(candidates[i]); // 将当前候选数加入组合路径
            // 递归搜索下一层可能的组合
            backtrack(candidates, target - candidates[i], i, path, result);
            path.remove(path.size() - 1); // 回溯,移除最后一个候选数
        }
    }

    public static void main(String[] args) {
        int[] candidates = {2, 3, 6, 7};
        int target = 7;
        List<List<Integer>> result = combinationSum(candidates, target);
        System.out.println(result); // 输出 [[2, 2, 3], [7]]
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑洞晓威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值