【每日力扣】 279.完全平方数与322. 零钱兑换

文章介绍了如何使用动态规划方法解决两个编程问题:给定整数n,找到和为n的最少完全平方数数量;以及给定硬币面额和总金额,计算凑成总金额所需的最少硬币数。通过状态转移方程优化求解过程。
摘要由CSDN通过智能技术生成

在这里插入图片描述

🔥 个人主页: 黑洞晓威
😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害

279.完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

解题思路

定义一个状态数组 dp,其中 dp[i] 表示数字 i 的最少完全平方数数量。

初始时,将所有的 dp[i] 设置为 i,因为最坏情况下,每个数字都可以表示为 i1 的平方和。

然后,我们从 1 开始遍历到 n,对于每个数字 i,我们尝试将其表示为一个完全平方数 j*j 和一个数字 i-j*j 的和,其中 j 的取值范围是 1sqrt(i)。我们更新 dp[i] 的值为 dp[i-j*j] + 1dp[i] 的较小值。

最后返回 dp[n] 即可得到和为 n 的完全平方数的最少数量。

代码实现

public class PerfectSquares {
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0] = 0;

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j * j <= i; j++) {
                dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
            }
        }

        return dp[n];
    }

    public static void main(String[] args) {
        PerfectSquares solution = new PerfectSquares();

        // Test Cases
        int n1 = 12;
        int n2 = 13;

        System.out.println("Minimum number of perfect squares for " + n1 + ": " + solution.numSquares(n1));
        System.out.println("Minimum number of perfect squares for " + n2 + ": " + solution.numSquares(n2));
    }
}

322. 零钱兑换

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

示例 1:

  • 输入:coins = [1, 2, 5], amount = 11
  • 输出:3
  • 解释:11 = 5 + 5 + 1

示例 2:

  • 输入:coins = [2], amount = 3
  • 输出:-1

示例 3:

  • 输入:coins = [1], amount = 0
  • 输出:0

示例 4:

  • 输入:coins = [1], amount = 1
  • 输出:1

示例 5:

  • 输入:coins = [1], amount = 2
  • 输出:2

解题思路

定义一个状态数组 dp,其中 dp[i] 表示凑齐金额 i 所需的最少硬币数量。初始时,将所有的 dp[i] 设置为一个较大的值,比如 amount + 1,表示最坏情况下无法凑齐金额 i

然后,我们从 1 开始遍历到 amount,对于每个金额 i,我们遍历硬币数组 coins,对于每个硬币 coin,如果 coin <= i,说明可以使用该硬币凑齐金额 i,则更新 dp[i] 的值为 dp[i - coin] + 1dp[i] 的较小值。

最后返回 dp[amount] 即可得到凑齐总金额所需的最少硬币数量。

代码实现

public class CoinChange {
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, amount + 1);
        dp[0] = 0;

        for (int i = 1; i <= amount; i++) {
            for (int coin : coins) {
                if (coin <= i) {
                    dp[i] = Math.min(dp[i], dp[i - coin] + 1);
                }
            }
        }

        return dp[amount] > amount ? -1 : dp[amount];
    }

    public static void main(String[] args) {
        CoinChange solution = new CoinChange();

        // Test Cases
        int[] coins1 = {1, 2, 5};
        int amount1 = 11;
        int[] coins2 = {2};
        int amount2 = 3;
        int[] coins3 = {1};
        int amount3 = 0;
        int[] coins4 = {1};
        int amount4 = 1;
        int[] coins5 = {1};
        int amount5 = 2;

        System.out.println("Minimum number of coins for amount " + amount1 + ": " + solution.coinChange(coins1, amount1));
        System.out.println("Minimum number of coins for amount " + amount2 + ": " + solution.coinChange(coins2, amount2));
        System.out.println("Minimum number of coins for amount " + amount3 + ": " + solution.coinChange(coins3, amount3));
        System.out.println("Minimum number of coins for amount " + amount4 + ": " + solution.coinChange(coins4, amount4));
        System.out.println("Minimum number of coins for amount " + amount5 + ": " + solution.coinChange(coins5, amount5));
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑洞晓威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值