TensorFlow简介与使用指南

TensorFlow 是由 Google 开发的开源机器学习框架,专注于深度学习数值计算。它通过构建数据流图(Data Flow Graph)来定义计算流程,支持高效的模型训练和部署,广泛应用于图像识别、自然语言处理、推荐系统等领域。


一、TensorFlow 的核心概念

  1. 张量(Tensor)

    • 多维数组,是 TensorFlow 中数据的载体(例如标量、向量、矩阵)。

    • 示例:tf.constant([[1, 2], [3, 4]]) 表示一个 2x2 的张量。

  2. 计算图(Graph)

    • 定义计算的静态结构(TensorFlow 1.x 的默认模式,2.x 默认启用即时执行,但仍支持图模式)。

  3. 即时执行(Eager Execution)

    • TensorFlow 2.x 默认模式,允许像普通 Python 代码一样逐行执行。

  4. 层(Layers)与模型(Model)

    • 提供高层 API(如 tf.keras)快速搭建神经网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄昏ivi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值