目录
一、ElasticSearch基本概念
Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elasticsearch用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。官方客户端在Java、.NET(C#)、PHP、Python、Apache Groovy、Ruby和许多其他语言中都是可用的。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr,也是基于Lucene
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址: https:// lucene.apache.org/
重要特性:
1、分布式的实时文件存储,每个字段都被索引并可被搜索
2、实时分析的分布式搜索引擎
3、可以扩展到上百台服务器,处理PB级结构化或非结构化数据
二、正向索引
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:1)用户搜索数据,条件是title符合 "%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
三、倒排索引
倒排索引是一种索引技术,它与传统的正向索引(如MySQL数据库中的索引)不同。在正向索引中,数据是按照文档到词汇的方式组织的,即每个文档记录了它包含哪些词汇。而倒排索引则是按照词汇到文档的方式组织的,即每个词汇对应了包含该词汇的所有文档列表。这种索引方式特别适用于全文搜索,因为它可以快速定位到包含特定词汇的所有文档,而无需逐个检查文档中的词汇。
倒排索引中有两个非常重要的概念:
1)文档( Document ):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息。
2)词条( Term ):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条。
创建倒排索引是对正向索引的一种特殊处理,流程如下:
1)将每一个文档的数据利用算法分词,得到一个个词条
2)创建表,每行数据包括词条、词条所在文档id、位置等信息
3)因为词条唯一性,可以给词条创建索引,例如hash表结构索引
下图是一个简单例子:
四、倒排索引的搜索流程
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件 "华为手机" 进行搜索。
2)对用户输入内容分词,得到词条: 华为 、 手机 。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
简单搜索流程图如下:
虽然要先查询倒排索引,再查询正排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
五、正向和倒排区别总结
- 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
- 而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程
- 倒排索引的优势:
倒排索引的主要优势在于它能够大大加快搜索速度,尤其是在处理大量文本数据时。由于倒排索引将搜索模式从文档到词汇转变为词汇到文档,它减少了搜索时需要扫描的数据范围,从而提高了效率。此外,倒排索引通常会存储词汇在文档中的位置信息,这对于执行更复杂的搜索查询(如短语查询)是非常有帮助的
正向索引优缺点:
优点:
- 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
倒排索引优缺点:
优点:
- 根据词条搜索、模糊搜索时,速度非常快
缺点:
- 只能给词条创建索引,而不是字段
- 无法根据字段做排序
六、ES的一些基本概念
1、文档和字段
elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中,而Json文档中往往包含很多的字段(Field),类似于数据库中的列:
2、索引和映射
索引(Index),就是相同类型的文档的集合。例如:
- 所有用户文档,就可以组织在一起,称为用户的索引;
- 所有商品的文档,可以组织在一起,称为商品的索引;
- 所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
七、mysql与elasticsearch
我们统一的把mysql与elasticsearch的概念做一下对比:
倒排索引与MySQL正向索引的对比:
在MySQL等关系型数据库中,正向索引通常用于加速基于主键或索引字段的查询。然而,当涉及到全文搜索时,尤其是模糊匹配或基于内容的搜索,正向索引的效率就显得不足了。这时,倒排索引的优势就显现出来,因为它能够直接通过词汇快速定位到相关文档,而不是逐行扫描整个数据集。
两者各自有自己的擅长支出:
- Mysql:擅长事务类型操作,可以确保数据的安全和一致性
- Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
- 对安全性要求较高的写操作,使用mysql实现
- 对查询性能要求较高的搜索需求,使用elasticsearch实现
- 两者再基于某种方式,实现数据的同步,保证一致性