could not convert string ‘Wavelength‘ to float64 at row 0, column 1.

如果是碰到这个报错,说明导入的数据集内有不能转成float64的字符或者tap,空格等等,删掉即可。

打开notepad然后ctrl+f,替换

有些可见光检测系统受到周围背景或杂光的限制。通常来说,300K黑体辐射不是一个问题。为了验证这一点:(a)计算在波长小于1 pm的情况下,300K黑体辐射功率的占比是多少。(b)对于波长小于1 um的情况,1 m²单位发射率的源每秒发射多少光子。使用波长为1 um的光子能量。请给出计算步骤。 (a) 计算300K黑体辐射在波长小于1 pm的占比: 黑体辐射功率公式为P = σAεT^4,其中σ为斯蒂芬-玻尔兹曼常数,A为表面积,ε为辐射率,T为温度。 我们可以使用普朗克公式计算在某一波长下黑体辐射的功率密度:B(λ, T) = 2hc²/λ^5 / (exp(hc/λkT) - 1),其中h为普朗克常数,c为光速,k为玻尔兹曼常数,T为温度,λ为波长。 因此,在波长小于1 pm的情况下,黑体辐射功率密度为B(λ, 300K) = 1.26×10^15 W/m²/μm。那么在0到1 pm范围内的黑体辐射功率占比为: ∫0^1 B(λ, 300K) dλ / ∫0^∞ B(λ, 300K) dλ ≈ 2.5% (b) 计算在波长小于1 um的情况下,1 m²单位发射率的源每秒发射的光子数: 首先,计算波长为1 um的光子能量。根据普朗克-爱因斯坦公式E = hc/λ,得到: E = hc/λ = 1.99×10^-19 J 根据每个光子能量和黑体辐射功率密度的关系,可以得到单位表面积上每秒发射的光子数: N = B(λ, 300K) / E = 6.32×10^18 photons/m²/s 因此,一个1 m²单位发射率的源每秒发射的光子数为: N' = N × ε × A = 6.32×10^18 photons/s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值