线性筛求莫比乌斯函数前缀和

这篇博客介绍了如何使用线性筛算法高效地计算1到N之间每个数的莫比乌斯函数。线性筛相比于埃拉托斯特henes筛更节省时间,通过判断数的质因子数量奇偶性来确定莫比乌斯函数的值。作者给出了线性筛的基本模板,并详细解释了如何在此基础上改编以计算莫比乌斯函数,最后展示了实现代码。

大家知道有一类问题,让你把1~N之间每一个数的莫比乌斯函数都输出来,或者把它们全部加起来再输出。这种问题应该属于求前缀和一类的啦 

用正规的方式表达:

gif.latex?%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cmu%20%28i%29

就论求1~N间每个数的莫比乌斯函数吧。我们一般使用Eratosthenes筛来解决。(简称埃氏)大家知道埃氏求素数的过程,其实就是标记N以内所有质数小于N的倍数,这样每个数有哪些质因子都可以被标记出来,同理若未被标记就说明是质数。利用每个质因子都可以去标记这一性质,我们就可以判断这个数的质因子数量的奇偶了。

int n, v[100000], miu[100000];
for(int i=1;i<=n;i++)miu[i]=1,v[i]=0;
	for(int i=2;i<=n;i++){
		if(v[i])continue;
		miu[i]=-1;
		for(int j=2*i;j<=n;j+=i){
			v[j]=1;
			if((j/i)%i==0)miu[j]=0;
			else miu[j]*=-1;
		}
	}

那么这个问题,能不能用线性筛来做呢?

当然也是可以的。

网上有很多线性筛求莫比乌斯函数的模板,但是由于蒟蒻比较懒,没去看dalao们的代码。于是就自己了想一个出来(保留所有版权

大家知道线性筛有一个很重要的特征,就是每个数只会被其最小的质因子筛一次,比埃氏更省时。那么线性筛求莫比乌斯函数也是在线性筛求素数的基础上改编的。

线性筛求1~N间素数模板如下:

int v[MAXN_N],prime[MAXN_N];
void primes(int n){
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值