目录
一、选题依据
1.选题背景
随着旅游业的蓬勃发展,青岛市作为重要的旅游目的地,吸引了大量游客。然而,旅游企业和管理部门在获取游客行为信息方面面临诸多挑战,传统的数据处理方式难以应对海量、多源异构的数据,无法深入挖掘游客行为特征和规律,导致在旅游产品优化、精准营销、景区管理等方面缺乏有效数据支持。旅游门票价格的制定需要综合考虑多种因素,而目前我国旅游门票价格制定在从游客角度考虑方面存在缺失,这凸显了深入了解游客行为对于旅游产业发展的重要性。游客行为是指游客在旅游活动过程中所产生的一系列活动表现及决策过程。行为意向是旅游者行为研究领域的重要概念,被看作是研究游客行为和旅游系统的基础和起点,反映了个人行为的意愿和内在需求,是促使游客做出旅游决策的重要因素。因此,在旅游研究中,行为意向被认为是预测发生实际行为的最佳因素[1]。游客行为数据的准确分析有助于合理制定门票价格,进而优化旅游产品和服务,提高游客满意度和旅游企业效益[2]。在此背景下,基于 Hadoop 的游客行为分析系统的开发显得尤为重要,它能够利用大数据技术处理和分析游客数据,为旅游产业发展提供有力决策依据。
2.国内外研究现状
(1)国内研究现状
国内旅游者行为研究多从‘市场供需’视角切入,集中关注旅游者的动机、信息搜寻、体验、决策等心理及行为变化规律,以及旅游目的地营销管理、产品设计和产业发展等问题。研究对象涵盖多种旅游活动类型,聚焦乡村、生态、女性旅游者等,未来可能向养老、智慧旅游者等拓展[3]。部分研究集中在利用大数据技术分析游客流量、旅游偏好等方面,如通过对景区门票销售数据、游客入园时间等数据分析游客流量的时空分布特征,基于游客在旅游网站上的搜索记录、评论内容等挖掘旅游偏好。但在针对特定城市旅游景点游客行为的深度分析以及系统构建方面,仍存在研究空间。一些城市虽已初步建立旅游大数据平台,但在数据挖掘算法应用和系统功能完整性上有待进一步提升,如数据挖掘算法的精准性和效率有待提高,系统在游客行为预测、智能决策支持等功能方面尚不完善。
(2)国外研究现状
国外在旅游大数据研究和应用方面起步较早,技术相对成熟。在游客行为模型构建方面,运用多种理论和方法深入剖析游客行为的形成机制和影响因素,如运用消费者行为理论、社会交换理论等构建模型,分析游客的决策过程、动机和满意度等。基于大数据的旅游推荐系统研究成果颇丰,通过挖掘游客的历史行为数据、偏好信息以及实时情境数据,为游客提供精准个性化的旅游产品推荐,部分系统已在旅游发达地区成功应用,显著提升了游客体验和旅游企业效益。然而,不同地区旅游资源和游客行为特点存在差异,针对青岛市旅游景点游客行为的系统性分析及相关系统开发研究相对较少[4][5][6]。
3.发展趋势
旅游企业和管理部门将更加依赖大数据分析结果进行决策,从旅游产品规划、市场营销到景区运营管理等各个环节,实现精准化、科学化运作。借助人工智能和机器学习算法,为游客提供更加个性化的旅游服务,如智能行程规划、实时旅游推荐等,提升游客体验。旅游行为是旅游市场拓展、旅游资源开发与规划的基础,对旅游产业的发展起着引导作用。一般旅游行为具有群体差异特征与时空行为特征,短暂节假日旅游者出游行为呈现出季节性与多元化特征。根据旅游旺季的数据显示,具有文化遗产资源的旅游目的地热度指数较高,但存在单极发展现象,同时,冷热点分布特征明显,缺乏区域统筹及协调发展规划[7]。
4.应用价值
为商家和景区提供以下有利信息。精准营销与推广策略:旅游企业可根据游客的兴趣偏好、来源地等信息,制定精准的营销方案。制定合适的旅游门票价格还要加强对游客人数与素质、游客多种心理因素、游客购买力等因素的考虑[8]。针对不同地区的游客,采用不同的宣传渠道和营销策略;依据游客偏好,推广与之匹配的旅游产品和活动,提高营销效果和转化率。景区管理者依据游客的游览行为和评价反馈,优化景区内部资源配置。如根据游客流量分布和停留时间,合理调整景区内的设施布局,改善热门景点的游览环境,基于大数据技术打造的旅游管理平台可通过收集和分析游客信息与景点数据,为景区管理者提供精准的管理决策支持,从而提升整个城市的旅游服务水平[9];针对游客感兴趣的内容,开发新的旅游产品和体验项目,如结合青岛啤酒文化推出啤酒酿造体验活动。同时,根据游客对餐饮、购物等方面的需求,优化商业配套设施,提高游客消费满意度。通过分析历史游客流量数据及相关影响因素,建立游客流量预测模型,帮助景区提前做好应对措施。同时,通过对游客行为的深入了解,建立良好的游客关系管理体系,如针对回头客提供个性化服务和优惠政策,增强游客忠诚度,促进旅游产业的可持续发展。
二、研究内容
1.学术构想与思路
本研究旨在构建基于 Hadoop 的青岛市旅游景点游客行为分析系统,通过对游客行为数据的采集、存储、处理与分析,为旅游产业发展提供决策支持。其涵盖旅游前的准备阶段,如信息收集、目的地筛选、行程规划;旅游中的实际体验阶段,包括交通方式选择、景点游览顺序、餐饮住宿消费行为、与其他游客及当地居民的互动交流,以及旅游后的反馈阶段,如是否会在游玩后发布评价等行为。本系统采用分层架构设计,包括数据采集层、数据存储层、数据处理层和应用服务层。数据采集层利用网络爬虫技术采集旅游网站、社交媒体等多源异构数据,获取景区内游客行为数据。数据存储层基于 Hadoop 分布式文件系统(HDFS)存储海量数据;数据处理层运用 MapReduce 和 Spark 等大数据处理技术对数据进行清洗、转换和分析;应用服务层为旅游企业、景区管理者和游客提供数据查询、分析报告、游客行为可视化展示等功能。
图1 系统流程图
2. 拟解决的关键问题
海量旅游数据采集与存储问题,数据可以通过多平台(社交平台、旅游平台等)用户发表的文章和相关文献来获取,并设计高效的数据采集方案,确保能够获取全面、准确的游客行为数据,并利用 Hadoop 技术实现数据的可靠存储和管理。
游客行为模式挖掘问题,运用数据挖掘算法,从复杂的游客行为数据中提取有价值的信息,如游客兴趣偏好、游览路径模式、停留时间规律等,为旅游服务优化提供依据。
系统性能优化问题,针对大数据处理的高延迟和高资源消耗问题,通过优化算法、调整系统参数和采用缓存技术等手段,提高系统的响应速度和处理效率。
3. 拟采取的研究方法
根据文献研究法,查阅国内外旅游大数据、游客行为分析等相关领域的文献资料,了解现有研究成果和技术方法,为本系统设计提供理论支持和参考;
数据分析法,对采集到的游客行为数据进行统计分析、关联分析和聚类分析等,挖掘数据背后的潜在规律和特征,为系统功能实现提供数据依据;
需求分析与系统设计法,根据软件工程的规范,进行系统的需求分析和设计。首先,明确系统功能需求,包括数据采集、存储、处理及展示等功能;其次,进行系统架构设计,确保系统具备高效性、可扩展性与稳定性;最后,完成模块设计、数据库设计与用户界面设计,确保系统易用、易维护并能满足旅游管理和游客行为分析的需求。
系统开发与测试法,在系统开发过程中,采用迭代开发方法进行功能实现,构建测试环境并进行系统各模块的单元测试与集成测试。重点测试数据采集的准确性、分析结果的可靠性以及系统的性能,以确保系统运行的高效性和准确性。
4. 技术路线
(1)旅游前准备阶段
数据采集利用网络爬虫技术从旅游网站、社交媒体平台抓取游客的游记、攻略、评价等文本数据。通过分析社交媒体上的旅游相关话题、评论、分享等内容,获取游客的情感倾向和口碑传播情况。
数据处理使用Flume进行数据收集,Kafka实现数据缓存和传输。运用MapReduce和Spark进行数据清洗、转换和分析,提取有价值的信息。
数据分析进行统计分析、关联分析和聚类分析,挖掘数据背后的潜在规律和特征。分析游客选择青岛市旅游景点的决策因素,如受旅游宣传推广、个人兴趣爱好、旅游时间与预算限制等因素的影响程度。
(2)旅游中的实际体验阶段
数据采集部分,从景区官网、青岛市文化和旅游局和社交媒体平台获取旅游景区数据(很多游客会在网上分享景点打卡经验,会提及在景点游玩了多久,以及是否是多次前往等,通过对大量相关笔记的分析获取数据),获取景点的人流量、停留时间、游览频率等行为数据。通过景区游客使用的旅游应用程序等进行数据采集。
数据处理部分,使用Hadoop生态系统中的Hive进行数据仓库管理,Spark进行数据处理和分析。HBase存储实时数据,为实时分析提供支持。
数据分析部分,分析游客在景区内的活动轨迹,包括游览路线、停留时间分布、景点访问顺序等。研究游客在景区内的互动行为,如是否参与景区内的活动、是否参与体验项目、是否会在网上发布信息分享与求助等。
(3)旅游后的反馈阶段
数据采集部分,收集游客在旅游结束后发布的评价、反馈等数据。通过社交媒体平台收集游客分享的旅游照片、视频、打卡记录等多媒体数据以及游客之间的互动信息。
数据处理部分,对收集到的数据进行清洗、转换和加载操作,为系统提供数据支持。使用MapReduce和Spark进行数据清洗、转换和分析,提取游客的反馈和评价信息。
数据分析部分,分析游客是否会在游玩后发布评价等行为,以及游客的满意度和忠诚度。建立游客关系管理体系,如针对回头客提供个性化服务和优惠政策,增强游客忠诚度。
(4)数据采集指标
数据完整性部分,衡量采集到的游客行为数据是否涵盖旅游前、中、后各个阶段的关键信息,包括旅游决策因素(如旅游宣传渠道影响、个人兴趣爱好、时间预算限制等)、景区内游览行为(如游览路线、景点访问顺序、活动参与情况等)以及旅游后反馈(如评价发布行为、满意度、忠诚度等)。
(5)数据分析指标
游客兴趣偏好挖掘,通过对游客浏览记录、搜索关键词、评价内容等数据的分析,预测游客兴趣偏好的准确程度。
游客流量预测,基于历史游客流量数据和相关影响因素(如季节、节假日、天气等)建立预测模型,对未来游客流量预测。采用均方根误差(RMSE)或平均绝对误差(MAE)等指标进行衡量。
游客行为模式识别,对游客游览路径模式、停留时间规律等行为模式的识别准确程度进行评估。可以通过将识别结果与专家经验(文献)判断进行对比验证。例如,对于游客游览路径模式,若识别出的主要游览路线与实际游客行走路线的吻合度较高,则准确率较高。
(5)分析方法
1.关联规则挖掘
寻找行为之间的关联,运用关联规则挖掘算法,分析游客不同行为之间的内在联系。例如,研究游客的游览路线选择与消费行为之间是否存在关联,即游客在游览特定景点后是否更倾向于购买某些纪念品或选择特定的餐饮场所。通过挖掘这些关联规则,可以为景区的商业布局和旅游产品推荐提供依据,如在游客常去的景点附近合理设置相关的购物和餐饮设施。兴趣偏好与行为关联:探索游客的兴趣偏好(如对海洋文化、历史遗迹等的兴趣)与他们在旅游中的实际行为(如游览相关景点、参与对应活动等)之间的关联关系。例如,发现对海洋文化感兴趣的游客更有可能参观海洋博物馆并参与海上观光活动,从而为精准营销和个性化推荐提供支持。
2.聚类分析
游客群体细分,根据游客的行为特征、兴趣偏好、消费模式等多维度数据,采用聚类分析算法将游客群体划分为不同的细分市场,并建立 K - means模型。例如,将游客分为高消费频繁出游型、经济型休闲游型、文化体验深度游型等不同类别。每个聚类内部的游客具有相似的行为模式和需求特征,这有助于旅游企业和景区管理者针对不同群体制定差异化的营销策略和服务方案。行为模式相似性分析:分析不同聚类游客群体在游览行为、停留时间、活动参与度等方面的相似性和差异性,深入了解各群体的行为模式特点。例如,比较高消费频繁出游型游客与经济型休闲游型游客在景区内的游览路线和停留时间分布上的差异,以便更好地满足不同群体的需求,优化景区资源配置,提高游客满意度。
3.可视化分析
通过设计数据可视化,运用 Echarts 等前端可视化库与后端数据交互,实现游客行为数据的生动展示。其应用于游客行为模式发现、旅游市场趋势分析及决策支持与优化建议等方面,如直观呈现游览路线与行为模式差异、洞察市场趋势、辅助景区管理与企业决策,从而为旅游产业发展提供有力支持。
(6)系统实现
系统实现将采用Java和Spring Boot框架构建后端服务,利用HTML5、CSS3、JavaScript和Echarts等技术进行前端开发,实现数据的可视化展示和交互。同时,通过Java接口调用实现数据交互和页面渲染,完成SpringBoot可视化组件开发和交互功能实现。
图2 技术路线图
5. 实施方案
(1)需求调研阶段
本系统重点研究以下几类游客行为:
旅游决策行为:探究游客选择青岛市旅游景点的决策因素,如受旅游宣传推广(广告、社交媒体推荐、旅游攻略等)、个人兴趣爱好、旅游时间与预算限制等因素的影响程度。分析游客如何在众多旅游目的地中选择青岛市,以及在青岛市内如何挑选具体景点和规划行程。
景区内游览行为:关注游客在景区内的活动轨迹,包括游览路线、停留时间分布、景点访问顺序等。例如,游客在景区内是否会按照推荐路线游览,以及是否会重复游览某些景点等。同时,研究游客在景区内的互动行为,如是否参与景区内的活动、是否与景区工作人员交流等。
消费行为:以体育旅游举例:体育旅游消费者作为体育旅游业的消费主体,其消费意识将会影响体育旅游的未来发展,重游意愿能显著预测重游行为,激发消费者重游意愿有利于促进体育旅游高质量发展[10]。考察游客在旅游过程中的各项消费情况,如交通费用、住宿档次与花费、餐饮消费偏好(当地特色美食选择、消费金额等)、购物消费(购买纪念品、特产等的种类和金额)以及娱乐项目消费等。
(2)数据处理阶段
确保游客兴趣偏好挖掘准确率,游客流量预测准确率,游客行为模式识别准确率,通过不同平台来确保数据的准确度。采用关联规则挖掘和聚类分析对数据进行分析,分析不同行为之间的关系并把游客群体划分为不同的细分市场。
(3)模型处理阶段
确定 K 值,根据游客行为特征、兴趣偏好、消费模式等多维度数据,将游客群体划分为不同的细分市场,如高消费频繁出游型、经济型休闲游型、文化体验深度游型等。
进行模型训练,随机初始化 K 个质心,将数据点分配到最近质心所属的聚类中,不断更新质心位置,直到满足停止条件。
模型评估与优化,使用轮廓系数等指标评估聚类结果,根据文献进行对比验证,优化模型参数和特征选择,确保聚类效果良好,能够准确反映游客群体差异,能为旅游企业和景区管理者提供针对性营销策略和服务方案制定的依据。
(4)系统设计阶段
进行系统总体架构设计,确定各层技术选型和系统架构模式。开展详细模块设计,包括数据采集模块、数据存储模块、数据分析模块、可视化展示模块等,绘制模块流程图和类图。完成数据库设计,设计合理的数据表结构和关系,编写 Hive 表创建语句和 HBase 表结构定义。利用原型设计工具制作系统界面原型,确定界面布局和交互流程,与用户进行沟通和确认。
(5)系统开发阶段
后端开发依据设计文档,使用 Java 和 Spring Boot 框架开发系统后端接口和服务,实现数据的采集、存储、处理和查询功能;前端开发基于前端技术栈开发用户界面,与后端协作,通过接口调用实现数据交互和页面渲染,完成可视化组件开发和交互功能实现;数据处理运用数据采集工具和框架采集青岛市旅游景点相关数据,并进行清洗、转换和加载操作,为系统提供数据支持。
(6)系统测试阶段
制定系统测试计划,明确测试范围、方法、资源和进度安排。编写详细测试用例,涵盖功能测试、性能测试、兼容性测试、安全测试等类型,执行测试并记录测试结果。针对测试发现的问题,进行问题定位和修复,进行回归测试确保问题得到解决。
6. 可行性分析
(1)数据来源可行性方面,本系统的数据来源广泛且可行。大数据存储中心作为整个旅游管理平台的‘数据仓库’,承担着海量数据的集中存储与管理任务。该中心存储的数据种类繁多,通过对大量相关笔记的分析获取数据,获取景点的人流量、停留时间、游览频率等行为数据;社交媒体数据,通过抓取社交媒体上的旅游相关话题、评论、分享等内容,分析游客的情感倾向和口碑传播情况,这些数据在互联网上公开可得。通过网络爬虫技术可以从各大旅游网站(如携程、马蜂窝、去哪儿网等)获取游客的游记、攻略、评价等文本数据,从社交媒体平台(如微博、微信、抖音等)收集游客分享的旅游照片、视频、打卡记录等多媒体数据以及游客之间的互动信息,这些数据包含了丰富的游客行为信息,如旅游偏好、游览感受、消费体验等。
(2)技术可行性方面,Hadoop 平台具有强大的分布式计算能力,其核心组件 HDFS 分布式文件系统能够存储海量的民俗文化旅游资源数据,为数据的持久化和管理提供了可靠保障。Hadoop开始从2009年再国内迅速成长起开。Hadoop系统再百度适用来于分析日志和挖掘网页数据库的数据,淘宝是借助Hadoop应用来为广大的用户提供更好更方便的服务[11]。Hadoop 生态系统提供了成熟的大数据处理技术和工具,Java 语言和 Spring Boot 框架广泛应用于企业级开发,在旅游服务网站系统开发中,Java 的平台无关性使系统能够在不同操作系统上稳定运行,其丰富的类库和高效的内存管理机制为处理大量旅游数据和复杂业务逻辑提供了有力支持,如实现快速的景点信息查询、准确的票务预订等功能,这充分体现Java技术在旅游行业应用的可行性[12]。能够确保系统的开发和实现。
(3)经济可行性方面,系统开发主要依赖开源软件和云服务资源,硬件成本较低。系统上线后,可通过为旅游企业提供数据分析服务、与景区合作推广等方式实现盈利。
(4)操作可行性方面,系统界面设计简洁直观,操作流程符合用户习惯,同时提供详细的用户操作手册和培训服务,确保用户能够方便快捷地使用系统,具有较高的操作可行性。
三、主要参考文献
- 王宽,叶华清.基于旅游行为的湖湘文旅综合廊道构建研究[J].南华大学学报(自然科学版),2024.
- 胡泉.青岛市旅游市场监管模式优化研究[D].青岛大学,2021.
- 白凯,王馨.中国旅游者行为研究述评(1987—2018)[J].旅游导刊, 2018.
- Zhou M ,Wang X .An Analysis of the Relationship Linking Immersive Tourism Experiencescape and Emotional Experience to Tourists’ Behavioral Intentions[J].Sustainability,2024.
- Ni X ,Wang D ,Chang J , et al.Digital nudging for sustainable tourist behavior in new media[J].Tourism Management,2025,107105087-105087.
- Bob M ,Bruce P ,Michelle T .The impact of changing seasons on in-destination tourist behaviour[J].Tourism Review,2024,79(6):1197-1209.
- 杨晓霞,张文菊.基于游客角度的我国旅游门票定价探讨[J].中国物价,2007,(04):32-35.
- 廖思维.大数据技术在城市旅游管理中的应用与实践[J].美与时代(城市版),2024,(11):105-107.
- 罗成一.文旅融合背景下景区故事化特征对旅游行为意向的影响研究[J].四川旅游学院学报,2024,(05):78-84.
- 高伟.基于计划行为理论的体育旅游消费者重游意愿研究[D].淮北师范大学,2023.
- 罗树兰.基于Hadoop数据处理研究及应用[D].云南大学,2016.
- 张岚.基于JAVA WEB技术旅游服务网站系统设计与实现[D].电子科技大学,2012.