目录
一、研究背景与意义
1.1研究背景
近年来,旅游业在全球范围内得到了前所未有的重视与发展,各国纷纷将旅游业视为推动经济增长、促进文化交流与提升国家形象的重要战略。在我国,旅游业更是被视为国民经济的战略性支柱行业和人民群众更加满意的现代服务业,其地位和功能在经济体系中不断深化。从20世纪80年代作为重要的创汇行业,到90年代被培育为新的经济增长点,再到21世纪初被定位为国民经济重要行业,直至2009年被明确为国民经济的战略性支柱行业,旅游业在我国的发展历程中扮演着越来越重要的角色。
尽管近年来中国经济面临一些挑战,但旅游业却逆势上扬,保持了强劲的增长势头。投资方面,旅游业已成为产业投资的热点领域,资本方普遍看好我国旅游业的未来发展,纷纷加大投入。消费方面,随着我国人均可支配收入的不断提高和休假制度的日益完善,人们对旅游的需求日益旺盛,旅游消费持续快速增长。数据显示,我国国内旅游人数和收入均保持了高于同期GDP增速的增长率,成为拉动经济增长的重要力量。
然而,旅游业的高速发展也带来了一系列问题。特别是在节假日期间,各著名景区经常出现人满为患的现象,不仅严重影响了游客的旅游体验,更给游客的人身安全带来了潜在威胁。这些事件引发了业界和学术界对景区承载量、旅游客流量预警及应急方案制定等方面的广泛关注与研究。但现有的应对措施往往带有很大的“应急”色彩,缺乏前瞻性和科学性。因此,如何实现旅游客流量的精准预测,成为当前旅游业亟待解决的重要问题。
随着互联网技术的普及和发展,人们获取信息的方式发生了深刻变化。网络搜索、社交媒体、移动通讯等数字化行为成为人们日常生活的重要组成部分,并在互联网上留下了海量数据。这些数据不仅反映了人们的兴趣和需求,也为旅游客流量的预测提供了新的数据源和可能性。已有研究表明,网络搜索数据等前置性数据能够很好地弥补传统预测方法的缺陷,具有更强的时效性和准确性。因此,基于网络热度分析的旅游景点客流量预测研究具有重要的现实意义和应用价值。
1.2研究意义
(1)理论意义:本研究将网络热度数据深度融入旅游客流量预测领域,进一步丰富旅游需求预测的理论体系。传统旅游客流量预测方法多基于历史数据与有限的经济社会指标,难以全面捕捉游客行为动态变化。网络热度数据的引入拓展了研究视角与方法,为揭示旅游市场需求形成机制与变化规律提供新途径,有助于推动旅游市场行为理论的完善与发展。例如,通过分析网络热度数据与客流量的关联关系,可以发现游客兴趣的转移和新兴旅游趋势的出现,为旅游理论研究提供新的实证依据。
(2)实践意义:精准的客流量预测对北京环球影城的运营管理至关重要。借助网络热度分析实现客流量的准确预测,景区能够更合理地配置资源,如根据预测客流量灵活调整工作人员数量、优化物资储备、科学安排游乐设施运营时间等,有效提升运营效率,降低运营成本。同时,基于网络热度的预测可助力景区制定更具针对性的营销策略,如在网络热度较高时期加大宣传推广力度,推出特色活动与优惠套餐,吸引更多游客;在网络热度较低时期,采取差异化营销策略,拓展客源市场。此外,准确的客流量预测有助于景区提前做好游客接待准备,保障游客游览体验与安全,减少因客流量过大或过小带来的负面影响,实现景区可持续发展。例如,景区可根据预测的客流量提前安排交通疏导人员,避免交通拥堵;合理安排餐饮供应,防止游客因等待时间过长而产生不满。对于旅游管理部门而言,本研究成果可为其进行旅游规划、资源整合、政策制定提供有力数据支持与决策依据,促进区域旅游业协调、健康、有序发展。例如,旅游管理部门可依据不同景区的客流量预测情况,合理规划旅游线路,优化旅游资源配置,避免景区之间的恶性竞争,提升整个区域的旅游吸引力和竞争力。
二、相关文献综述
2.1旅游客流量预测方法研究进展
传统的旅游客流量预测方法主要涵盖时间序列分析和计量经济模型。时间序列模型如ARIMA及其扩展模型SARIMA等,通过对历史客流量数据的深入分析,挖掘数据内部的趋势、季节性和周期性规律,进而实现对未来客流量的预测。例如,Gerard(1995)运用ARIMA模型对巴巴多斯的游客数量进行预测,在短期预测中取得了一定的成效;宋诗瑶和周玉春(2019)利用该模型对上海景区客流量进行短期预测,为景区管理提供了参考依据。计量经济模型则侧重于探究经济因素与旅游客流量之间的内在关联,常见的如自回归分布滞后模型(ADLM)、向量自回归模型(VAR)等。Tukamushaba 等(2013)运用 ADLM 模型对北京入境旅游人数进行建模分析,发现 “口碑效应”、目的地旅游成本、客源地收入水平等因素对旅游客流量具有显著影响;Song和Witt(2006)采用VAR模型对旅游热门景点进行预测,取得了较好的效果。
近年来,机器学习和深度学习方法在旅游客流量预测领域得到了广泛应用与快速发展。机器学习模型如人工神经网络(ANN)、支持向量回归(SVR)等,凭借其强大的非线性处理能力,能够有效应对旅游客流量数据的复杂性。Höpken 等(2020)的研究表明ANN在旅游客流量预测方面优于传统的时间序列模型;梁昌勇等(2015)通过组合 SVR 和 ARMA 模型对风景区日游客流量进行预测,提高了预测的时效性和准确性。深度学习模型中的长短期记忆网络(LSTM)和卷积神经网络(CNN)等,因其独特的结构和强大的特征学习能力,在处理时间序列数据和提取复杂特征方面表现出色。Li 和 Cao(2018)利用 LSTM 模型对小雁塔的旅游客流量进行预测,取得了较高的准确率;Kim(2021)的研究显示 CNN 在旅游客流量预测中具有出色的性能,能够有效捕捉数据中的时空特征。
2.2网络热度分析在旅游研究中的应用现状
网络热度数据主要来源于搜索引擎指数(如百度指数、谷歌趋势)、社交媒体热度(微博话题热度、抖音视频播放量等)以及旅游论坛活跃度等方面。这些数据蕴含着丰富的信息,能够实时反映游客的兴趣、需求和行为倾向。在旅游研究中,网络热度数据已被广泛应用于多个领域。
在旅游目的地选择方面,许多研究表明网络热度对游客的目的地决策具有重要影响。龙茂兴等(2011)发现百度指数与四川旅游流量之间存在强正相关性;Artola 等(2015)利用谷歌趋势数据衡量西班牙旅游相关关键字的受欢迎程度,进而改善了对西班牙旅游量流入的预测。在旅游市场趋势分析中,网络热度数据也发挥着关键作用。Ginsberg 等(2009)通过分析谷歌搜索数据成功监测流感疫情趋势,为公共卫生领域提供了新的监测方法;在旅游领域,类似的方法被用于预测旅游市场的需求变化,如 Wu(2014)利用谷歌住房相关搜索数据预测房地产市场价格走向和销售量,为旅游相关产业的市场分析提供了借鉴。
2.3网络热度与旅游客流量关系的研究成果
已有研究通过多种方法深入探讨了网络热度与旅游客流量之间的关系。部分研究采用相关性分析方法,如 Huang 等(2013)通过分析百度指数与北京故宫游客量的关系,发现两者之间存在显著相关性;靳鑫元和罗珊(2016)对比多种预测模型结合百度指数预测平遥古城旅游客流量,结果表明网络热度数据能够有效提高预测精度。一些研究运用回归分析构建模型,进一步揭示网络热度对旅游客流量的影响机制。例如,Wang 等(2018)将网络搜索数据纳入回归模型预测旅游客流量,结果显示网络热度指标对客流量具有显著的正向影响;曹蕴琦(2023)以西湖景区为研究对象,通过灰色关联度分析选取关键词,构建神经网络模型结合网络热度数据对景区客流量进行预测,结果表明网络热度与西湖景区客流量存在较强关联性,且引入迁移学习思想后能提升预测效果。
2.4基于网络热度的旅游客流量预测模型研究
在将网络热度数据应用于旅游客流量预测的模型构建方面,已有诸多探索。一些研究将网络热度数据作为传统预测模型的补充变量。如刘柯晖(2023)构建了 “分解 - 集成” 预测模型,利用百度搜索指数数据对九寨沟景区客流量进行预测,先通过数据降噪、相关分析等确定关键词,再运用 STL 季节分解法对数据分解,针对不同成分序列分别采用 ARIMAX、简单季节估计方法和 PSO - SVR 算法预测,最后集成得到最终预测结果,该模型相比单一模型和未降噪处理模型在预测精度上有显著提升,充分体现了网络热度数据与传统模型结合在处理复杂客流量数据时的优势。
还有研究尝试构建融合网络热度数据的新型模型架构。例如,应志豪(2022)针对搜索引擎数据高维和旅游客流量数据非线性的特点,提出将数据降维技术与深度学习模型组合的方法,以安徽宏村景区为例,采用主成分分析(PCA)、L1 正则化(Lasso)等多种数据降维方法对包含网络热度数据的数据集进行处理,构建卷积神经网络(CNN)、长短期记忆网络(LSTM)等深度学习模型进行预测,并通过对比不同组合确定最优预测方案,同时进一步构建混合深度学习模型如 CNN - BiLSTM 等,研究结果表明混合模型能更好地提取复合特征,提高预测精度,为基于网络热度的旅游客流量预测提供了新的模型思路和方法借鉴。
2.5现有研究的不足与展望
尽管已有研究在基于网络热度分析的旅游客流量预测方面取得了一定成果,但仍存在一些不足之处。首先,在网络热度数据的处理方面,部分研究对数据的噪声处理不够精细,可能影响预测模型的准确性。其次,在模型构建上,虽然有多种模型被提出,但对于不同类型景区和复杂多变的旅游市场环境,模型的普适性有待进一步提高。再者,多数研究在考虑影响因素时,未能全面涵盖一些新兴因素,如短视频平台的传播效应、游客实时反馈对网络热度和客流量的动态影响等。
未来研究可在以下几个方面深入拓展。一是进一步优化网络热度数据的采集和预处理方法,采用更先进的技术去除噪声和异常值,提高数据质量。二是加强对不同类型旅游景区(如主题公园、自然风景区、历史文化景区等)的针对性研究,构建更具适应性的预测模型。三是结合大数据技术和人工智能的新发展,如引入更复杂的深度学习架构和强化学习算法,不断提升预测模型的性能和智能化水平。四是深入研究网络热度与客流量之间的动态反馈机制,以及突发事件和政策变化等因素对两者关系的调节作用,使预测模型能够更好地应对复杂多变的现实情况,为旅游景区的科学管理和可持续发展提供更有力的支持。
三、研究的主要目标和内容
3.1研究主要目标
(1)构建基于网络热度分析的客流量预测模型
通过收集和分析北京环球影城在网络上的热度数据(如社交媒体讨论量、搜索指数、新闻报道量等),结合历史客流量数据,构建能够准确预测未来客流量变化的预测模型。
(2)验证模型的有效性和准确性
将构建的预测模型应用于实际数据,通过对比预测结果与实际客流量数据,验证模型的有效性和准确性。同时,分析模型在不同时间段(如节假日、工作日)和不同天气条件下的预测表现。
(3)分析网络热度与客流量之间的关系
深入研究网络热度数据(如关键词搜索量、社交媒体讨论热度等)与客流量之间的内在联系,探讨网络热度变化对客流量变化的影响机制和规律。
(4)为景区管理和运营提供决策支持
基于预测结果和网络热度分析,为北京环球影城的管理和运营部门提供科学的决策支持,如制定合理的开放时间、优化游览路线、调整门票价格等,以提升游客满意度和景区经济效益。
(5)拓展研究方法的适用范围
通过本研究,探索基于网络热度分析的客流量预测方法在其他旅游景点和文化名城的应用可能性,为旅游行业的客流量预测研究提供新的思路和方法。
3.2研究内容
(1)文献综述与理论基础
系统回顾国内外关于旅游景点客流量预测和网络热度分析的相关研究,梳理研究现状和发展趋势,为本研究提供坚实的理论基础。
(2)数据收集与处理
收集北京环球影城的历史客流量数据和网络热度数据,包括社交媒体讨论量、搜索指数、新闻报道量等。对数据进行清洗、整理和预处理,确保数据的准确性和一致性。
(3)预测模型构建
基于收集的数据,选择合适的预测方法和模型(如时间序列分析、回归分析、机器学习算法等),构建基于网络热度分析的客流量预测模型。
(4)模型验证与优化
将构建的预测模型应用于实际数据,通过对比预测结果与实际客流量数据,验证模型的有效性和准确性。根据验证结果,对模型进行优化和调整,提高模型的预测性能。
(5)网络热度与客流量关系分析
利用统计分析和数据挖掘技术,深入研究网络热度数据与客流量之间的内在联系,探讨网络热度变化对客流量变化的影响机制和规律。
(6)案例分析与决策支持
以北京环球影城为例,进行案例分析,展示预测模型的应用效果。基于预测结果和网络热度分析,为景区管理和运营部门提供科学的决策支持,如制定合理的开放时间、优化游览路线、调整门票价格等。
(7)研究总结与展望
总结本研究的主要成果和贡献,分析研究的局限性和不足。同时,展望未来研究方向和可能的应用拓展,为旅游行业的客流量预测研究提供新的思路和方法。
四、拟采用的研究方法、步骤
4.1研究方法
(1)文献研究法:通过知网数据库和网络搜索,以网络热度、搜索数据、客流量预测等为检索关键词,全面搜集国内外在相关领域的大量文献资料。通过对这些文献的系统梳理,深入了解当前研究的现状与前沿成果,仔细总结已有的研究方法与实践经验。同时,敏锐剖析现有研究中存在的问题与不足之处,从而明确本研究的独特方向与重点突破点,为后续研究工作筑牢坚实的理论基础与方法借鉴基石。例如,在梳理旅游客流量预测文献时,发现传统方法在考虑游客行为动态因素方面的欠缺,而网络热度分析有望弥补这一不足,进而确定将网络热度数据纳入研究的重要性。
(2)数据分析法:首先,通过数据抓取与预处理技术,使用爬虫技术从各大搜索引擎(如百度、谷歌等)、社交媒体平台(如微博、抖音和小红书等)和旅游论坛(如携程旅行、大众点评等),爬取网络热度数据;从北京环球影城的景区管理部门、票务系统、游客统计系统等获取客流量数据,运用统计学的方法对这些数据展开详细分析,精准把握数据的分布特征、趋势变化以及变量之间的相关性等关键信息。同时,借助先进的数据挖掘技术深入挖掘数据中潜在的模式与规律,如利用关联规则挖掘发现网络热度指标与客流量之间的潜在关联,运用聚类分析对不同时间段或不同网络热度水平下的客流量进行分类研究。在此基础上,精心构建一套科学完善的数据处理与分析框架,为后续预测模型的构建与优化提供强有力的数据支撑与决策依据。例如,通过数据分析发现特定网络关键词搜索量的增长与景区客流量的上升存在显著的时间滞后相关性,为模型构建提供重要线索。
(3)模型构建法:依据数据的实际特点与本研究的既定目标,审慎选择合适的预测模型构建方法。在模型构建过程中,严格遵循科学严谨的原则,充分结合旅游领域的专业知识与实际情况,将网络热度数据有机融入模型之中。例如,在构建时间序列模型时,考虑将网络热度指标作为外生变量引入,以增强模型对客流量变化的解释能力。同时,不断对模型进行训练、测试与优化调整,确保所构建的模型能够精准有效地反映网络热度与客流量之间的复杂关系,切实具备良好的预测性能与实际应用价值。例如,利用历史数据对初步构建的模型进行训练,通过对比不同模型的预测结果和评估指标,选择最优模型并进行进一步优化。
(4)实证研究法:以北京环球影城作为具体研究对象,积极收集其实际运营过程中的网络热度数据和客流量数据。运用这些真实数据对所构建的预测模型进行全面训练与严格验证,将模型的预测结果与实际客流量进行细致对比分析,深入检验模型的预测性能与准确性。通过实证研究,系统总结网络热度对北京环球影城客流量影响的具体规律与实践经验,为景区的科学管理与高效运营提供切实可行的实践指导与决策建议。例如,在不同季节和节假日期间对模型进行验证,观察模型在不同场景下的预测效果,并根据验证结果对模型进行针对性改进。
4.2研究步骤
(1)数据采集与处理:确定网络热度数据的具体来源渠道,如百度指数、微博热门话题、旅游专业论坛等平台,并运用专业的数据采集工具(如网络爬虫技术)和科学的抽样方法,按照既定的规则与标准收集与北京环球影城相关的关键词数据、话题热度数据、用户评论数据等。同时,从景区管理部门、票务系统、游客统计系统等获取客流量数据,并对收集到的两类数据进行严格的清洗、去噪、标准化处理。例如,运用数据清洗算法去除重复数据和异常值,通过标准化转换使不同来源的数据具有可比性。采用数据可视化技术对处理后的数据进行初步分析,直观展示数据的基本特征与分布情况,为后续研究奠定良好的数据基础。在数据采集过程中,每日对采集到的数据进行初步审核与整理,确保数据的完整性与准确性;数据处理阶段,邀请数据分析专家对处理方法和结果进行指导与评估,保证数据质量符合研究要求。
(2)影响因素分析与指标选取:从多个维度深入分析影响北京环球影城客流量的因素,除网络热度外,还涵盖时间因素(如工作日、周末、节假日、季节等)、天气状况(如气温、降水、空气质量等)、景区活动安排(如主题活动、演出节目、新游乐设施开放等)、周边交通条件(如交通拥堵指数、公共交通可达性等)、旅游政策法规(如门票价格政策、旅游补贴政策等)等方面。运用灰色关联分析、主成分分析等方法筛选出与客流量高度相关的关键指标,并确定网络热度指标在其中的重要性权重。例如,通过灰色关联分析计算网络热度指标与客流量的关联度,筛选出关联度较高的关键词搜索量、社交媒体点赞数等作为核心网络热度指标。在此过程中,邀请旅游行业专家、景区管理人员进行头脑风暴,共同探讨可能的影响因素,确保因素分析的全面性与科学性。
(3)模型构建与训练:根据数据的特点与研究目标,选择合适的预测模型,如时间序列模型(ARIMA、SARIMA等)、计量经济模型(多元线性回归、向量自回归等)、机器学习模型(决策树、支持向量机等)或深度学习模型(神经网络、循环神经网络等),并将筛选出的关键指标作为模型输入变量,构建基于网络热度分析的北京环球影城客流量预测模型。利用训练集数据对模型进行训练,在训练过程中采用合适的优化算法(如梯度下降法、遗传算法、粒子群优化算法等)调整模型参数,不断提高模型的拟合能力与预测精度。同时,采用交叉验证等技术防止模型过拟合,确保模型的泛化能力。例如,在使用神经网络模型时,通过调整隐藏层节点数量、学习率等参数,优化模型性能。每周对模型训练效果进行评估与总结,根据评估结果调整训练策略与参数设置,记录模型训练过程中的关键数据与问题,为后续模型优化提供参考。
(4)模型评估与验证:采用均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R²)等多种评估指标对训练好的模型进行全面评估,分析模型在预测客流量方面的准确性、稳定性与可靠性。将数据集划分为训练集、验证集和测试集,通过验证集对模型进行验证与调整,利用测试集对最终模型的性能进行独立测试与评价。同时,与其他已有的客流量预测模型进行对比分析,突出本研究模型的优势与创新之处。例如,将本研究构建的基于网络热度的模型与传统时间序列模型进行对比,展示在不同时间段和不同客流量场景下本模型的预测优势。根据评估与验证结果,对模型进行进一步优化与改进,如调整模型结构、增加新的特征变量或改进训练算法等,确保模型达到最佳性能状态。
(5)研究成果总结:系统总结本研究的成果,包括北京环球影城客流量预测模型的构建过程、关键参数设置、性能评估结果、影响因素分析结论等内容。撰写详细的研究报告,以清晰、准确的语言阐述研究的背景、目的、方法、结果与结论,为景区管理部门、旅游从业者及相关研究人员提供有价值的参考资料。
五、参考文献
[1]刘妙男.基于深度学习的城市公交客流量预测模型研究[D].大连海洋大学,2024.DOI:10.27821/d.cnki.gdlhy.2024.000145.
[2]汪兰兰.基于爬虫和SVM的微博评论情感分析研究[J].无线互联科技,2024,21(09):19-22+26.
[3]刘柯晖.基于互联网搜索数据的旅游景区客流量预测研究[D].云南大学,2023.
[4]李锦源.基于实时数据的短时交通流预测模型研究[D].北京化工大学,2023.DOI:10.26939/d.cnki.gbhgu.2023.000851.
[5]熊瑞婷.基于深度学习的微博文本情感分析研究与应用[D].南昌大学,2023.DOI:10.27232/d.cnki.gnchu.2023.004137.
[6]曹蕴琦.基于百度指数的旅游客流量预测[D].东北财经大学,2023.DOI:10.27006/d.cnki.gdbcu.2023.001976.
[7]王伟贤.基于情感词典和深度学习的微博文本情感分析[D].扬州大学,2023.DOI:10.27441/d.cnki.gyzdu.2023.000888.
[8]应志豪.基于搜索引擎数据的景区客流量预测方法及应用[D].浙江工商大学,2022.DOI:10.27462/d.cnki.ghzhc.2022.001222.
[9]胡湘君.一种基于微博情感分析的网络舆情预测模型研究[D].桂林电子科技大学,2022.DOI:10.27049/d.cnki.ggldc.2022.000705.
[10]朱悦嘉.基于微博文本的热点事件情感分析研究[D].西安电子科技大学,2022.DOI:10.27389/d.cnki.gxadu.2022.001385.
[11]黄辰军.基于热点事件的微博可视化系统设计与实现[D].重庆邮电大学,2022.DOI:10.27675/d.cnki.gcydx.2022.000565.
[12]Lu W ,Rui H ,Liang C , et al.A Method Based on GA-CNN-LSTM for Daily Tourist Flow Prediction at Scenic Spots[J].Entropy,2020,22(3):261.
[13]梅梅,刘颖,唐小利,等.微博非结构化数据的情绪挖掘方法及在旅游预测中的应用[J].情报资料工作,2019,40(01):64-72.
[14]Lei K ,Wang X ,Dou X .Relationship between Tourist Attractions and the Baidu Index: A Case Study of National 5A Scenic Spots of Xi'an City During National Day Holiday[C]//[出版者不详],2017:
[15]Tian F ,Zhen W ,Ming S X .SCENIC SPOT TOURISTS FLOW PREDICTION RESEARCH BASED ON WEB SEARCH ITEMS[C]//重庆环球联合科学技术研究院.Proceedings of 2017 2nd Joint International Mechanical,Electronic and Information Technology Conference(JIMET 2017).Hainan College Of Software Technology;,2017:4.
[16]黄鲲.九寨沟网络关注度分析及客流量预测模型构建[D].上海师范大学,2016.
[17]刘颖,吕本富,彭赓.网络搜索对股票市场的预测能力:理论分析与实证检验[J].经济管理,2011,33(01):172-180.DOI:10.19616/j.cnki.bmj.2011.01.024.
[18]曾忠禄,郑勇.基于计量经济学模型的内地赴澳门游客量预测[J].旅游科学,2009,23(03):55-61.DOI:10.16323/j.cnki.lykx.2009.03.013.
[19]李山,邱荣旭,陈玲.基于百度指数的旅游景区络空间关注度:时间分布及其前兆效应[J].地理与地理信息科学,2008,(06):102-107.
[20]梁明英,王丽娜.网络旅游信息对游客行为模式影响的调查分析——以泰山游客为例[J].泰山学院学报,2008,(01):83-87.
[21]Song H ,Li G .Tourism demand modelling and forecasting-A review of recent research[J].Tourism management,2008,29(2):203-220.
[22]鲍青青,唐善茂,刘胜峰,等.基于粗神经网络的旅游需求预测研究[J].安徽农业科学,2006,(17):4437-4438+4440.DOI:10.13989/j.cnki.0517-6611.2006.17.127.