判别分析例题

例一

在这里插入图片描述


解:
(1)距离判别准则,使用马氏距离来判断,样品到第i个总体的马氏距离为


d i 2 ( x ) = {d_i^2}(x)= di2(x)= ( x − μ i ) 2 σ i 2 (x-{μ_i})² \over {σ_i^2} σi2(xμi)2

分别计算出样品x=2.5到三个总体的距离为:
在这里插入图片描述
应选择距离最小的,即 d 3 2 ( x ) {d_3^2}(x) d32(x),所以按照距离判别准则应把样品归为 G 3 {G_3} G3

(2)
样品属于总体i的后验概率为:


z i {z_i} zi(x)=ln q i {q_i} qi- 1 2 \frac {1}{2} 21ln| Σ i {Σ_i} Σi|- 1 2 \frac {1}{2} 21 d i 2 ( x ) {d_i^2}(x) di2(x)

由于题目已知先验概率 q i {q_i} qi相等,可以只计算-ln| Σ i {Σ_i} Σi|- d i 2 ( x ) {d_i^2}(x) di2(x)的部分,去掉负号计算如下
在这里插入图片描述
选择最小的,因此样品判归为 G 1 {G_1} G1
(如果不去掉负号,直接计算后验概率,应选择最大的,表示样品属于该类的概率最大)


例二

在这里插入图片描述


解:
这题和上一题一样,只不过正态总体从一维变成了二维的。
(1)样本t到总体i的马氏距离:


d i 2 ( x ( t ) , G i ) = {d_i^2}({x_{(t)}},{G_i})= di2(x(t)Gi)= ( x ( t ) {x_{(t)}} x(t)- μ i {μ_i} μi)’ Σ i − 1 {Σ_i^{-1}} Σi1( x ( t ) {x_{(t)}} x(t)- μ i {μ_i} μi)

对于样品 x ( 1 ) {x_{(1)}} x(1)

d 1 2 ( x ( 1 ) , G 1 ) = {d_1^2}({x_{(1)}},{G_1})= d12(x(1)G1)= 25
d 2 2 ( x ( 1 ) , G 2 ) = {d_2^2}({x_{(1)}},{G_2})= d22(x(1)G2)= 21.25

所以应判归 G 2 {G_2} G2

对于样品 x ( 2 ) {x_{(2)}} x(2)

d 1 2 ( x ( 2 ) , G 1 ) = {d_1^2}({x_{(2)}},{G_1})= d12(x(2)G1)= 50
d 2 2 ( x ( 2 ) , G 2 ) = {d_2^2}({x_{(2)}},{G_2})= d22(x(2)G2)= 12.5

所以应判归 G 2 {G_2} G2

(2)样品属于总体i的后验概率为:


z i {z_i} zi(x)=ln q i {q_i} qi- 1 2 \frac {1}{2} 21ln| Σ i {Σ_i} Σi|- 1 2 \frac {1}{2} 21 d i 2 ( x ) {d_i^2}(x) di2(x)

此题也是先验概率相同,因此也可以只计算后面两项,取最小值
(如果先验概率和协方差阵都相同,那么就等价于距离判别法)
我在这里选择把后验概率计算出来,取最大值:
对于样本 x ( 1 ) {x_{(1)}} x(1)

z 1 {z_1} z1(x)=ln 1 2 \frac {1}{2} 21- 1 2 \frac {1}{2} 21ln| Σ 1 {Σ_1} Σ1|- 1 2 \frac {1}{2} 21 d 1 2 ( x ( 1 ) , G 1 ) {d_1^2}({x_{(1)}},{G_1}) d12(x(1)G1)=-1-12.5=-13.5
z 2 {z_2} z2(x)=ln 1 2 \frac {1}{2} 21- 1 2 \frac {1}{2} 21ln| Σ 2 {Σ_2} Σ2|- 1 2 \frac {1}{2} 21 d 2 2 ( x ( 1 ) , G 2 ) {d_2^2}({x_{(1)}},{G_2}) d22(x(1)G2)=-1-2-10.625=-13.625

应该选大的那个,所以应判归 G 1 {G_1} G1

对于样本 x ( 2 ) {x_{(2)}} x(2)

z 1 {z_1} z1(x)=ln 1 2 \frac {1}{2} 21- 1 2 \frac {1}{2} 21ln| Σ 1 {Σ_1} Σ1|- 1 2 \frac {1}{2} 21 d 1 2 ( x ( 2 ) , G 1 ) {d_1^2}({x_{(2)}},{G_1}) d12(x(2)G1)=-1-25=-26
z 2 {z_2} z2(x)=ln 1 2 \frac {1}{2} 21- 1 2 \frac {1}{2} 21ln| Σ 2 {Σ_2} Σ2|- 1 2 \frac {1}{2} 21 d 2 2 ( x ( 2 ) , G 2 ) {d_2^2}({x_{(2)}},{G_2}) d22(x(2)G2)=-1-2-6.25=-9.25

应判归 G 2 {G_2} G2

  • 35
    点赞
  • 72
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
当然,我可以为您提供一个LDA(线性判别分析)的例题。假设我们有一组二维数据,其中包含两个类别。我们的目标是通过LDA找到一个投影方向,将数据映射到一维空间上,使得不同类别之间的距离最大化,同一类别内部的样本距离最小化。 假设我们有以下两个类别的样本数据: 类别1:(1, 2), (2, 3), (3, 3) 类别2:(2, 1), (3, 2), (4, 1) 首先,我们需要计算每个类别的均值向量。对于类别1,均值向量为: μ1 = ( (1+2+3)/3, (2+3+3)/3 ) = (2, 2.67) 对于类别2,均值向量为: μ2 = ( (2+3+4)/3, (1+2+1)/3 ) = (3, 1.33) 然后,我们计算类内散度矩阵Sw。类内散度矩阵的计算方式是每个类别内部样本与其均值向量之间的差异的协方差矩阵的和。 对于类别1,计算协方差矩阵为: S1 = ((1-2)^2 + (2-2.67)^2 + (3-2.67)^2)/3 = 0.89 对于类别2,计算协方差矩阵为: S2 = ((2-3)^2 + (3-1.***均值向量之间差异的协方差矩阵。 Sb = ((2-3)^2 + (2.67-1.33)^2)/2 = 1.56 接下来,我们需要计算投影方向的向量w。我们需要最大化类间散度矩阵Sb,并最小化类内散度矩阵Sw。 通过计算特征值和特征向量,我们可以得到投影方向的向量w。在这个例子中,由于是二维数据,投影方向是一维的。 假设w = (w1, w2)是投影方向的向量,其中w1是x轴方向的分量,w2是y轴方向的分量。 由于投影方向是一维的,所以我们可以假设w2 = 0,那么我们只需要找到w1即可。 通过计算Sw^-1 * Sb的特征值和特征向量,我们可以得到w1。 最后,我们可以将数据样本在投影方向上进行投影,并根据投影的结果来进行分类。 这就是一个简单的LDA线性判别分析例题。希望可以帮助到您!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值