最优分配方案,最佳调度(回溯,递归)

  • 问题描述

车间有m(m>0)台机床,可同时加工工件,但同一台机床不能同时加工多个工件。今有n(n>0)个工件,加工不同工件所花费的时间有差异。各工件可以在任何一台机床上加工。同一工件在不同机床上加工,花费的时间相同。一台机床加工完一个工件后可以立刻加工下一个工件,换工件的时间忽略不计。请找出最优分派方案,使得加工完所有工件所花费的时间最短。

  • 输入格式

输入的第1行是两个正整数,分别表示m和n的值。第2行有n个正整数,表示加工第i(i=1,2,…,n)个工件需要花费的时间。

  • 输出格式

先输出m行,第i(i=1,2,…,m)行用空格分隔若干个整数,表示哪些工件在第i台机床上加工。最后还要输出1个整数,表示加工所有工件需要花费多少时间。

  • 数据范围

1≤m≤20,1≤n≤200

 第一种,递归,这种方法可算数据的范围较大。

#include<iostream>
#include<algorithm>
using namespace std;
int n,m;        //n表示要处理的工件数,m表示机床数 
int totalTime[200]={0};    //存各个机器处理工件的总时间 
int optimumTime;      //记录所需的最佳时间 
int WPtime[200];     //存放机器处理各个工件的时间 
int WP[200];        //存放各个工件被处理所需的时间 
int Machine;       //记录要处理工件的机床 
class Solution{
	public:
		void OptimumTimes(int k)
		{
			if(k>=n)
				return ;
			//第一种情况:机床比要处理的工件多 
			if(m>=n)
			{
				optimumTime=getMaxTime(WP);
				for(int i=0;i<n;i++)
				{
						WPtime[i]=i;
						totalTime[i]+=WP[i];
				}
				return ;
			}
			//第一遍先让各个机床都开始工作,然后记录处理工件时间最短的机床 
			if(k==0)
			{
				for(int i=0;i<m;i++,k++)
				{
						Machine=i;
						WPtime[i]=Machine;
						totalTime[i]+=WP[k];
				}
				optimumTime=WP[k];
			}
			//开始处理第一遍之后的工件 
			if(k<n)
			{
				totalTime[Machine]+=WP[k];         // 把即将要处理的工件的时间加到上一遍记录的最短时间上 
				WPtime[k]=Machine;                 //记录哪个机床要处理工件,并记录处理时间 
				optimumTime=totalTime[Machine];     //记录机床处理当前工件的总时间 
				for(int i=0;i<m;i++)
				{
					if(totalTime[i]<=optimumTime)     //寻找所有机床中处理工件时间最短的机床 
					{
						optimumTime=totalTime[i];
						Machine=i;
					}
				}
				OptimumTimes(k+1);
			}
		}
	int getMaxTime(int t[])
	{
    	int maxTime=t[0];
    	for(int i=1; i<n; i++)
    	{
        	if(maxTime<t[i])
        	{
            	maxTime=t[i];
        	}
    	}
    	return maxTime;
	}
	void show()
	{
		if(n>m)
		{
			for(int i=0;i<m;i++)
		{
				for(int j=0;j<n;j++)
			   {
				if(WPtime[j]==i)
					cout<<WP[j]<<" ";
			}
			cout<<endl;	
		  }
		}
		else
		{
			for(int i=0;i<n;i++)
				cout<<WP[i]<<endl;
		}
		cout<<getMaxTime(totalTime);
	}
};
int main()
{
	cin>>m>>n;
	for(int i=0;i<n;i++)
		cin>>WP[i];
	sort(WP,WP+n, greater<int>());      //降序排序 
	Solution s;
	s.OptimumTimes(0);
	cout<<endl;
	s.show();
	return 0;
}

 第二种,回溯算法,这种算法可算数据的范围较小。

        

#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int WP[200],totalTime[200],optimumTime=1e8;
int allocate[200];
class Solution
{
	public:
	void Back(int k,int maxnum)
	{
		if(maxnum>=optimumTime)
			return;
		if(k>=n)
		{
			if(maxnum<optimumTime) 
				optimumTime=maxnum;
			return;
	}
		for(int i=0;i<m;i++){
			if(totalTime[i]+WP[k]<=optimumTime){
				totalTime[i]+=WP[k];
				allocate[k]=i;
				Back(k+1,max(maxnum,totalTime[i]));
				totalTime[i]-=WP[k];
			}
		}
			return;	
	}
	void show(int t[])
	{
		for(int i=0;i<m;i++)
		{
			for(int j=0;j<n;j++)
			{
				if(allocate[j]==i)
					cout<<WP[j]<<" ";
			}
			cout<<endl;	
		}
		cout<<optimumTime<<endl;	
	}
};
int main(){
	cin>>m>>n;
	for(int i=0;i<n;i++)
		cin>>WP[i];
	sort(WP,WP+n,greater<int>());//排序
	Solution s;
	cout<<endl;
	s.Back(0,0);
	s.show(allocate);
	return 0;
}



              
    
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值