人工智能
文章平均质量分 94
亿巫
这个作者很懒,什么都没留下…
展开
-
【人工智能】猫狗识别
我们使用CIFAR10数据集。CIFAR10数据集包含60,000张32x32的彩色图片,10个类别,每个类包含6,000张。其中50,000张图片作为训练集,10000张作为验证集。这次我们只对其中的猫和狗两类进行预测。图 1 CIFAR10 数据集图像示例本次实验,在跑完老师提供的 PaddlePaddle 代码的基础上,采用PaddlePaddle环境进一步训练模型,利用PaddlePaddle的可视化插件VisualDL进行训练模型过程的可视化。另附代码见附录和.ipynb 文件。本次实验,我主要比原创 2024-04-08 00:30:00 · 2937 阅读 · 1 评论 -
【人工智能】手写数字识别
在ResNet-50及更深的模型中,还引入了一个额外的1x1卷积层用于进一步减少特征图的维度。总体而言,AlexNet通过引入深度、大型卷积核、ReLU激活函数、池化层、LRN层和Dropout技术等关键组件,极大地推动了深度学习在计算机视觉领域的发展,并在ImageNet ILSVRC比赛中取得了显著的突破。尽管 LeNet 本身在今天的大规模图像分类任务中可能显得较为简单,但它为卷积神经网络的发展奠定了基础,为后来更深层次的网络(如 AlexNet、VGG、ResNet 等)的设计提供了灵感。原创 2024-04-06 00:00:00 · 1408 阅读 · 0 评论 -
【大数据存储】yolov3识虫实验
图3 左边是输入图片,上半部分所示的过程是使用卷积神经网络对图片提取特征,随着网络不断向前传播,特征图的尺寸越来越小,每个像素点会代表更加抽象的特征模式,直到输出特征图,其尺寸减小为原图的1/32。resume_checkpoint:断点继续训练,如果之前已经训练过模型,并且保存了断点文件,可以指定断点文件的路径,以在之前训练的基础上继续训练。Sim: 在Loc的基础上,如果检测框与真值框的类别不相同,但两者同属于一个亚类,则不认为该检测框是错误的,在这种评估要求下的PR曲线, AP为。原创 2024-04-04 01:30:00 · 2387 阅读 · 1 评论 -
【人工智能】安全帽检测实验
Sim: 在Loc的基础上,如果检测框与真值框的类别不相同,但两者同属于一个亚类,则不认为该检测框是错误的,在这种评估要求下的PR曲线, AP为0.961。Oth: 在Sim的基础上,如果检测框与真值框的亚类不相同,则不认为该检测框是错误的,在这种评估要求下的PR曲线,AP为0.961。图3 左边是输入图片,上半部分所示的过程是使用卷积神经网络对图片提取特征,随着网络不断向前传播,特征图的尺寸越来越小,每个像素点会代表更加抽象的特征模式,直到输出特征图,其尺寸减小为原图的1/32。原创 2024-04-03 20:26:12 · 2118 阅读 · 2 评论 -
【人工智能】使用Python构建神经网络模型预测房价
一 、实验目的熟悉 python 的语法使用掌握深度学习的全过程深刻理解并且掌握全连接神经网络的工作原理二 、实验内容用最简单的线性回归模型解决这个问题,并用 python 的 numpy 库搭建一个单层的全连接神经网络用于拟合这个线性回归函数来预测 Boston 的房价。三 、实验原理构建模型和完成训练的程序图本实验使用单层全连接网络结构,如下图所示房价模型单层全连接网络结构图四、实验过程数据处理1.1数据读入。原创 2023-12-04 20:42:49 · 2462 阅读 · 0 评论