题目:
本题要求实现一种数字加密方法。首先固定一个加密用正整数 A,对任一正整数 B,将其每 1 位数字与 A 的对应位置上的数字进行以下运算:对奇数位,对应位的数字相加后对 13 取余——这里用 J 代表 10、Q 代表 11、K 代表 12;对偶数位,用 B 的数字减去 A 的数字,若结果为负数,则再加 10。这里令个位为第 1 位。
输入格式:
输入在一行中依次给出 A 和 B,均为不超过 100 位的正整数,其间以空格分隔。
输出格式:
在一行中输出加密后的结果。
输入样例:
1234567 368782971
输出样例:
3695Q8118
代码长度限制 16 KB
时间限制 400 ms
内存限制 64 MB
解题思路
- 由于A和B对位是右对齐的,但是数组的访问是从左边开始的,因此不能很好的对其,所以我们只有将两个字符串给翻转,这样我们就可以对其了。
- 我们选用A和B最长的长度进行循环遍历,首先应该判断此循环A和B此轮的字符是否已经为空,如果为空,则需要用0来补齐;如果不为空,则就将字符转换成整形即可。
- 然后准备一个string类型的变量存放最终结果,以尾插的形式插入,那么个位的数先被插入,然后依次高位插入,所以还需要将这个变量进行翻转,最后即可得到最终结果。
AC代码
#include <bits/stdc++.h>
using namespace std;
int main()
{
string a, b, c, d = "0123456789JQK";
cin >> a >> b;
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
for (int i = 0; i < a.length() || i < b.length(); i++)
{
int k1 = i < a.length()?a[i]-'0':0;
int k2 = i < b.length()?b[i]-'0':0;
c.push_back(i%2==0?d[(k1 + k2) % 13]:(k2-k1+10)%10+'0');
}
reverse(c.begin(), c.end());
cout << c << endl;
return 0;
}