将矩阵的行列互换得到的新矩阵称为转置矩阵。
把m×n矩阵
A=[ a11 a12 … a1n ]
[ a21 a22 … a2n ]
[ … … … … ]
[ am1 am2 … amn ]
的行列互换之后得到的矩阵,称为 A 的转置矩阵,记作 AT ,
即
A T= [ a11 a21 … am1 ]
[ a12 a22 … am2 ]
[ … … … … ]
[ a1n a2n … amn ]
由定义可知, A 为m×n 矩阵,则 AT 为 n×m 矩阵。例如,
A=[1 0 2 ]
[ -2 1 3 ]
,
AT=[1 -2 ]
[ 0 1 ]
[ 2 3 ]
n×n矩阵称之为 n阶方阵,
如果 n 阶方阵和它的转置相等,即 AT=A ,则称矩阵 A 为对称矩阵。
输入格式:
在第一行内给出n值(1<n<100)。
从第二行以后给出n阶矩阵所有行的元素值。
输出格式:
当输入的n阶矩阵是对称矩阵