打家劫舍 III
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root
。
除了 root
之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root
。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
示例:
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
思路及解析
首先明确二叉树上的每个点有两种状态(选中和不选中)。
可以使用哈希表 select[o]
表示选中 o 节点时,以 o 节点的为根节点的二叉树上的最大权值和;noSelect[o]
表示不选中 o 节点时,以 o 节点的为根节点的二叉树上的最大权值和。
-
当 o 选中时,o 的左右孩子都不能选中,此时最大权值和为:
o 的权值 + 左孩子不选中 + 右孩子不选中;
-
当 o 不选中时,o 的左右孩子可以选中,也可以不选中, 此时最大权值和为:
max(左孩子选中, 左孩子不选中) + max(右孩子选中, 右孩子不选中)。
class Solution {
public:
unordered_map <TreeNode*, int> select, noSelect;
void dfs(TreeNode* node) {
if (!node) return;
dfs(node -> left);
dfs(node -> right);
select[node] = node -> val + noSelect[node -> left] + noSelect[node -> right];
noSelect[node] = max(select[node -> left], noSelect[node -> left])
+ max(select[node -> right], noSelect[node -> right]);
}
int rob(TreeNode* root) {
dfs(root);
return max(select[root], noSelect[root]);
}
};