- 博客(26)
- 收藏
- 关注
原创 BERT模型
本文介绍了BERT模型的复现过程,包括模型结构、训练流程和环境配置。BERT采用多层Transformer编码器,包含嵌入层(Token/段落/位置嵌入)、编码器层(多头自注意力和前馈网络)和输出头(MLM/NSP任务)。复现步骤:1)配置Python≤3.7环境;2)下载BERT-Tiny/Base模型文件;3)预训练:使用create_pretraining_dat
2025-10-13 10:13:28
753
原创 EDSR模型
EDSR超分辨率模型的PyTorch实现,该模型在CVPRW2017论文中提出。核心结构包括32个残差块(移除BN层以保留像素强度)、残差缩放机制和子像素上采样层。数据集使用DIV2K(800训练+100验证),通过option.py配置参数。训练采用分尺度策略(x2→x3→x4),预训练模型传递参数。测试结果显示x4模型PSNR达28.933dB,支持基准数据集和自定义图片验证。
2025-09-29 19:32:56
842
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
6