Sketch是一个独特的AI代码编写助手,专为使用Python中的pandas库的用户而设计。
它利用机器学习算法来理解用户数据的上下文,并提供相关的代码建议,使数据操作和分析任务更容易、更高效。
Sketch不需要用户在他们的IDE中安装任何其他插件,因此可以快速轻松地开始使用。
这可以大大减少数据相关任务所需的时间和精力,并帮助用户编写更好、更高效的代码。
安装:
pip install sketch
例我们需要在 Pandas 数据框中添加一个 .sketch 扩展名才能使用此库。
.sketch.ask
ask是Sketch的一项功能,允许用户以自然语言格式询问有关其数据的问题。它为用户的查询提供基于文本的响应。
# Importing libraries
import sketch
import pandas as pd
file = "D://xxxxxx//xxxxxxx//altair//airports.csv"
# Reading the data (using twitter data as an example)
df = pd.read_csv(file)
print(df)
输出美国机场的概况:
# 问表单有哪些项目
df.sketch.ask("Which columns are category type?")
iata, name, city, state, country
合并到下一个命令输出截图
# 描述表单的形状行和列的大小
df.sketch.ask("What is the shape of the dataframe")
The shape of the dataframe is (3376, 8).
以上两条命令的结果:
.sketch.howto
HowTo 是一项功能,它提供了一个代码块,可用作各种数据相关任务的起点或结论。
我们可以要求代码片段来规范化它们的数据、创建新特征、绘制数据,甚至构建模型。
这将节省时间并轻松复制和粘贴代码;
您无需从头开始手动编写代码。
# 请用一段代码实现可视化
df.sketch.howto("Visualize the emotions")
输出
.sketch.apply
.apply 函数有助于生成新特征、解析字段和执行其他数据操作。
要使用此功能,我们需要拥有 OpenAI 帐户并使用 API 密钥来执行任务。我还没有尝试过这个功能。
我喜欢使用这个库,尤其是如何操作,我发现它很有用。
最后,再来安利一波。这个库,还可以支持中文哦!!!
df.sketch.howto("使用时间序列算法?")
返回结果:
# import necessary libraries
import pandas as pd
import numpy as np
# create a new column for the month
df['month'] = df.index.strftime('%b-%y')
# group by month and calculate the mean of the count column
df_mean = df.groupby('month').agg({'count': np.mean})
# print the results
print(df_mean)
真的是一个给pandas爱好者的福利。