思路:
(1)将牛按wi + si从小到大的顺序从上往下排列,此时n头奶牛最大风险值最小。
(2)证明:假定存在 wi + si > wi+1 + si+1;则第i头:w1 + w2 + .. + wi-1 - si;第i + 1头:w1 + w2 +... + wi - si+1;若将其交换;
则第i头:w1 + w2 + .. wi-1+ wi+1 - si;第i + 1头:w1 + w2 +... + wi-1 - si+1;现在要比较其峰值;
注意到都有w1 + w2 + ... + wi-1,于是将其删除,(-si; wi -si+1;)(wi+1 - si; -si+1;)而
wi - si+1>wi+1 -si;-si+1 + wi >-si+1;则交换后峰值减小,于是证明按si+wi由小到大而由上到下,峰值最小。
(3)具体流程:
- 存储奶牛数据。
- 按wi+si从小到大排序。
- 一方面维护i奶牛上面所有奶牛w和,另一方面计算该奶牛风险值更新res。
代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 5e4 + 10;
typedef long long LL;
struct COW
{
int w;
int s;
int sum;
bool operator < (const COW &t)
{
return sum < t.sum;
}
}cow[N];
int main()
{
int n;
cin >> n;
for(int i = 0;i < n;i ++)
{
cin >> cow[i].w >> cow[i].s;
cow[i].sum = cow[i].w + cow[i].s;
}
sort(cow,cow + n);
int res = -0x3f3f3f3f,sum = 0;
for(int i = 0;i < n;i ++)
{
res = max(res,sum - cow[i].s);
sum += cow[i].w;
}
cout << res << endl;
return 0;
}