最长递增子序列,力扣

题目地址:

300. 最长递增子序列 - 力扣(LeetCode)

难度:中等

今天刷,大家有兴趣可以点上面链接,看看题目要求,试着做一下

题目:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 

我们直接看题解吧:

快速理解解题思路小建议:

可以先简单看一下解题思路,然后照着代码看思路,会更容易理解一些。

审题目+事例+提示:

严格递增  即连续递增

解题方法:

方法一是  动态规划

方法二是  动态规划+二分法

解题方法分析:

 解法一中,遍历计算 dp列表需 O(N),计算每个 dp[k] 需 O(N)。动态规划中,通过线性遍历来计算 dp的复杂度无法降低,每轮计算中,需要通过线性遍历 [0,k)区间元素来得到 dp[k] 。

因此,可以通过重新设计状态定义,使整个 dp为一个排序列表,这样在计算每个 dp[k] 时,就可以通过二分法遍历 [0,k)区间元素,将此部分复杂度由 O(N)降至 O(logN)。

解题分析:

新的状态定义:
       我们考虑维护一个列表 tails,其中每个元素 tails[k] 的值代表 长度为 k+1的子序列尾部元素的值。如 [1,4,6]序列,长度为 1,2,3的子序列尾部元素值分别为 tails=[1,4,6]。


状态转移设计:
设常量数字 N,和随机数字 x,我们可以容易推出:当 N 越小时,N<x 的几率越大。

例如: N=0肯定比 N=1000更可能满足 N<x。
        在遍历计算每个 tails[k],不断更新长度为 [1,k] 的子序列尾部元素值,始终保持每个尾部元素值最小 (例如 [1,5,3], 遍历到元素 5时,长度为 2的子序列尾部元素值为 5;当遍历到元素 3时,尾部元素值应更新至 3,因为 3 遇到比它大的数字的几率更大)。tails列表一定是严格递增的: 即当尽可能使每个子序列尾部元素值最小的前提下,子序列越长,其序列尾部元素值一定更大。


反证法证明: 当 k<i,若 tails[k]>=tails[i],代表较短子序列的尾部元素的值 >较长子序列的尾部元素的值。这是不可能的,因为从长度为 i的子序列尾部倒序删除 i−1个元素,剩下的为长度为 k 的子序列,设此序列尾部元素值为 v,则一定有 v<tails[i] (即长度为 k 的子序列尾部元素值一定更小), 这和 tails[k]>=tails[i]矛盾。
既然严格递增,每轮计算 tails[k]时就可以使用二分法查找需要更新的尾部元素值的对应索引 i。

解题思路:

1、状态定义: tails[k]的值代表 长度为 k+1子序列 的尾部元素值。
 

2、转移方程: 设 res为 tails 当前长度,代表直到当前的最长上升子序列长度。

设 j∈[0,res),考虑每轮遍历 nums[k]时,通过二分法遍历 [0,res)列表区间,找出 nums[k]的大小分界点,会出现两种情况:

    · 区间中存在 tails[i]>nums[k]: 将第一个满足 tails[i]>nums[k] 执行 tails[i]=nums[k] ;因为更小的 nums[k] 后更可能接一个比它大的数字(前面分析过)。
    · 区间中不存在 tails[i]>nums[k] : 意味着 nums[k] 可以接在前面所有长度的子序列之后,因此肯定是接到最长的后面(长度为 res ),新子序列长度为 res+1。


3、初始状态:令 tails列表所有值 =0。
4、返回值: 
返回 res ,即最长上升子子序列长度。

代码实现(方法二):

// Dynamic programming + Dichotomy.
class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] tails = new int[nums.length];
        int res = 0;
        for(int num : nums) {
            int i = 0, j = res;
            while(i < j) {
                int m = (i + j) / 2;
                if(tails[m] < num) i = m + 1;
                else j = m;
            }
            tails[i] = num;
            if(res == j) res++;
        }
        return res;
    }
}

代码实现(方法一): 

// Dynamic programming.
class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums.length == 0) return 0;
        int[] dp = new int[nums.length];
        int res = 0;
        Arrays.fill(dp, 1);
        for(int i = 0; i < nums.length; i++) {
            for(int j = 0; j < i; j++) {
                if(nums[j] < nums[i]) dp[i] = Math.max(dp[i], dp[j] + 1);
            }
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

  • 20
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LeetCode力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列。递增子序列是数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长子序列长度 } } return max_len; // 返回最长连续递增子序列的长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长子序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值